Skip to main content

Structural Prediction of Peptide–MHC Binding Modes

  • Protocol
  • First Online:
Computational Peptide Science

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2405))

Abstract

The immune system is constantly protecting its host from the invasion of pathogens and the development of cancer cells. The specific CD8+ T-cell immune response against virus-infected cells and tumor cells is based on the T-cell receptor recognition of antigenic peptides bound to class I major histocompatibility complexes (MHC) at the surface of antigen presenting cells. Consequently, the peptide binding specificities of the highly polymorphic MHC have important implications for the design of vaccines, for the treatment of autoimmune diseases, and for personalized cancer immunotherapy. Evidence-based machine-learning approaches have been successfully used for the prediction of peptide binders and are currently being developed for the prediction of peptide immunogenicity. However, understanding and modeling the structural details of peptide/MHC binding is crucial for a better understanding of the molecular mechanisms triggering the immunological processes, estimating peptide/MHC affinity using universal physics-based approaches, and driving the design of novel peptide ligands. Unfortunately, due to the large diversity of MHC allotypes and possible peptides, the growing number of 3D structures of peptide/MHC (pMHC) complexes in the Protein Data Bank only covers a small fraction of the possibilities. Consequently, there is a growing need for rapid and efficient approaches to predict 3D structures of pMHC complexes. Here, we review the key characteristics of the 3D structure of pMHC complexes before listing databases and other sources of information on pMHC structures and MHC specificities. Finally, we discuss some of the most prominent pMHC docking software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hansen TH, Bouvier M (2009) MHC class I antigen presentation: learning from viral evasion strategies. Nat Rev Immunol 9:503–513. https://doi.org/10.1038/nri2575

    Article  CAS  PubMed  Google Scholar 

  2. Hewitt EW (2003) The MHC class I antigen presentation pathway: strategies for viral immune evasion. Immunology 110:163–169. https://doi.org/10.1046/j.1365-2567.2003.01738.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jones EY, Fugger L, Strominger JL, Siebold C (2006) MHC class II proteins and disease: a structural perspective. Nat Rev Immunol 6:271–282. https://doi.org/10.1038/nri1805

    Article  CAS  PubMed  Google Scholar 

  4. Roche PA, Furuta K (2015) The ins and outs of MHC class II-mediated antigen processing and presentation. Nat Rev Immunol 15:203–216. https://doi.org/10.1038/nri3818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348:69–74. https://doi.org/10.1126/science.aaa4971

    Article  CAS  PubMed  Google Scholar 

  6. Tran E, Turcotte S, Gros A et al (2014) Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344:641–645. https://doi.org/10.1126/science.1251102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sahin U, Türeci Ö (2018) Personalized vaccines for cancer immunotherapy. Science 359:1355–1360. https://doi.org/10.1126/science.aar7112

    Article  CAS  PubMed  Google Scholar 

  8. Wirth TC, Kühnel F (2017) Neoantigen targeting-dawn of a new era in cancer immunotherapy? Front Immunol 8:1848. https://doi.org/10.3389/fimmu.2017.01848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tran E, Robbins PF, Rosenberg SA (2017) “Final common pathway” of human cancer immunotherapy: targeting random somatic mutations. Nat Immunol 18:255–262. https://doi.org/10.1038/ni.3682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lizée G, Overwijk WW, Radvanyi L et al (2013) Harnessing the power of the immune system to target cancer. Annu Rev Med 64:71–90. https://doi.org/10.1146/annurev-med-112311-083918

    Article  CAS  PubMed  Google Scholar 

  11. Galluzzi L, Chan TA, Kroemer G et al (2018) The hallmarks of successful anticancer immunotherapy. Sci Transl Med 10:eaat7807. https://doi.org/10.1126/scitranslmed.aat7807

    Article  CAS  PubMed  Google Scholar 

  12. Comber JD, Philip R (2014) MHC class I antigen presentation and implications for developing a new generation of therapeutic vaccines. Ther Adv Vaccines 2:77–89. https://doi.org/10.1177/2051013614525375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yin Y, Li Y, Mariuzza RA (2012) Structural basis for self-recognition by autoimmune T-cell receptors. Immunol Rev 250:32–48. https://doi.org/10.1111/imr.12002

    Article  CAS  PubMed  Google Scholar 

  14. Gfeller D, Bassani-Sternberg M, Schmidt J, Luescher IF (2016) Current tools for predicting cancer-specific T cell immunity. Onco Targets Ther 5:e1177691. https://doi.org/10.1080/2162402X.2016.1177691

    Article  CAS  Google Scholar 

  15. Mösch A, Raffegerst S, Weis M et al (2019) Machine learning for cancer immunotherapies based on epitope recognition by T cell receptors. Front Genet 10:1141. https://doi.org/10.3389/fgene.2019.01141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Adams JJ, Narayanan S, Birnbaum ME et al (2016) Structural interplay between germline interactions and adaptive recognition determines the bandwidth of TCR-peptide-MHC cross-reactivity. Nat Immunol 17:87–94. https://doi.org/10.1038/ni.3310

    Article  CAS  PubMed  Google Scholar 

  17. Antunes DA, Abella JR, Devaurs D et al (2018) Structure-based methods for binding mode and binding affinity prediction for peptide-MHC complexes. Curr Top Med Chem 18:2239–2255. https://doi.org/10.2174/1568026619666181224101744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Robinson J, Barker DJ, Georgiou X et al (2020) IPD-IMGT/HLA Database. Nucleic Acids Res 48:D948–D955. https://doi.org/10.1093/nar/gkz950

    Article  CAS  PubMed  Google Scholar 

  19. Gfeller D, Bassani-Sternberg M (2018) Predicting antigen presentation-what could we learn from a million peptides? Front Immunol 9:1716. https://doi.org/10.3389/fimmu.2018.01716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Klein J, Sato A (2000) The HLA system. First of two parts. N Engl J Med 343:702–709. https://doi.org/10.1056/NEJM200009073431006

    Article  CAS  PubMed  Google Scholar 

  21. Gao GF, Rao Z, Bell JI (2002) Molecular coordination of alphabeta T-cell receptors and coreceptors CD8 and CD4 in their recognition of peptide-MHC ligands. Trends Immunol 23:408–413. https://doi.org/10.1016/s1471-4906(02)02282-2

    Article  PubMed  Google Scholar 

  22. Sliz P, Michielin O, Cerottini JC et al (2001) Crystal structures of two closely related but antigenically distinct HLA-A2/melanocyte-melanoma tumor-antigen peptide complexes. J Immunol 167:3276–3284

    Article  CAS  PubMed  Google Scholar 

  23. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF chimera--a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  24. Gao GF, Tormo J, Gerth UC et al (1997) Crystal structure of the complex between human CD8alpha(alpha) and HLA-A2. Nature 387:630–634. https://doi.org/10.1038/42523

    Article  CAS  PubMed  Google Scholar 

  25. Wang H, Capps GG, Robinson BE, Zúñiga MC (1994) Ab initio association with beta 2-microglobulin during biosynthesis of the H-2Ld class I major histocompatibility complex heavy chain promotes proper disulfide bond formation and stable peptide binding. J Biol Chem 269:22276–22281. https://doi.org/10.1016/S0021-9258(17)31787-8

    Article  CAS  PubMed  Google Scholar 

  26. Shields MJ, Kubota R, Hodgson W et al (1998) The effect of human beta2-microglobulin on major histocompatibility complex I peptide loading and the engineering of a high affinity variant. Implications for peptide-based vaccines. J Biol Chem 273:28010–28018. https://doi.org/10.1074/jbc.273.43.28010

    Article  CAS  PubMed  Google Scholar 

  27. Uger RA, Chan SM, Barber BH (1999) Covalent linkage to beta2-microglobulin enhances the MHC stability and antigenicity of suboptimal CTL epitopes. J Immunol 162:6024–6028

    CAS  PubMed  Google Scholar 

  28. Collins EJ, Garboczi DN, Wiley DC (1994) Three-dimensional structure of a peptide extending from one end of a class I MHC binding site. Nature 371:626–629. https://doi.org/10.1038/371626a0

    Article  CAS  PubMed  Google Scholar 

  29. Guillaume P, Picaud S, Baumgaertner P et al (2018) The C-terminal extension landscape of naturally presented HLA-I ligands. Proc Natl Acad Sci U S A 115:5083–5088. https://doi.org/10.1073/pnas.1717277115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Matsui M, Hioe CE, Frelinger JA (1993) Roles of the six peptide-binding pockets of the HLA-A2 molecule in allorecognition by human cytotoxic T-cell clones. Proc Natl Acad Sci U S A 90:674–678. https://doi.org/10.1073/pnas.90.2.674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Deres K, Beck W, Faath S et al (1993) MHC/peptide binding studies indicate hierarchy of anchor residues. Cell Immunol 151:158–167. https://doi.org/10.1006/cimm.1993.1228

    Article  PubMed  Google Scholar 

  32. Bassani-Sternberg M, Chong C, Guillaume P et al (2017) Deciphering HLA-I motifs across HLA peptidomes improves neo-antigen predictions and identifies allostery regulating HLA specificity. PLoS Comput Biol 13:e1005725. https://doi.org/10.1371/journal.pcbi.1005725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Perez MAS, Bassani-Sternberg M, Coukos G et al (2019) Analysis of secondary structure biases in naturally presented HLA-I ligands. Front Immunol 10:823. https://doi.org/10.3389/fimmu.2019.02731

    Article  CAS  Google Scholar 

  34. Liu J, Gao GF (2011) Major histocompatibility complex: interaction with peptides. eLS. https://doi.org/10.1002/9780470015902.a0000922.pub2

  35. Sezerman U, Vajda S, DeLisi C (1996) Free energy mapping of class I MHC molecules and structural determination of bound peptides. Protein Sci 5:1272–1281. https://doi.org/10.1002/pro.5560050706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Antunes DA, Vieira GF, Rigo MM et al (2010) Structural allele-specific patterns adopted by epitopes in the MHC-I cleft and reconstruction of MHC:peptide complexes to cross-reactivity assessment. PLoS One 5:e10353. https://doi.org/10.1371/journal.pone.0010353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schueler-Furman O, Elber R, Margalit H (1998) Knowledge-based structure prediction of MHC class I bound peptides: a study of 23 complexes. Fold Des 3:549–564. https://doi.org/10.1016/S1359-0278(98)00070-4

    Article  CAS  PubMed  Google Scholar 

  38. Fagerberg T, Cerottini J-C, Michielin O (2006) Structural prediction of peptides bound to MHC class I. Proteins 356:521–546. https://doi.org/10.1016/j.jmb.2005.11.059

    Article  CAS  Google Scholar 

  39. Nicholls S, Piper KP, Mohammed F et al (2009) Secondary anchor polymorphism in the HA-1 minor histocompatibility antigen critically affects MHC stability and TCR recognition. Proc Natl Acad Sci U S A 106:3889–3894. https://doi.org/10.1073/pnas.0900411106

    Article  PubMed  PubMed Central  Google Scholar 

  40. Reiser J-B, Legoux F, Gras S et al (2014) Analysis of relationships between peptide/MHC structural features and naive T cell frequency in humans. J Immunol 193:5816–5826. https://doi.org/10.4049/jimmunol.1303084

    Article  CAS  PubMed  Google Scholar 

  41. Cole DK, Bulek AM, Dolton G et al (2016) Hotspot autoimmune T cell receptor binding underlies pathogen and insulin peptide cross-reactivity. J Clin Invest 126:2191–2204. https://doi.org/10.1172/JCI85679

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lee JK, Stewart-Jones G, Dong T et al (2004) T cell cross-reactivity and conformational changes during TCR engagement. J Exp Med 200:1455–1466. https://doi.org/10.1084/jem.20041251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pieper J, Dubnovitsky A, Gerstner C et al (2018) Memory T cells specific to citrullinated α-enolase are enriched in the rheumatic joint. J Autoimmun 92:47–56. https://doi.org/10.1016/j.jaut.2018.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang JH, Meijers R, Xiong Y et al (2001) Crystal structure of the human CD4 N-terminal two-domain fragment complexed to a class II MHC molecule. Proc Natl Acad Sci U S A 98:10799–10804. https://doi.org/10.1073/pnas.191124098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chicz RM, Urban RG, Lane WS et al (1992) Predominant naturally processed peptides bound to HLA-DR1 are derived from MHC-related molecules and are heterogeneous in size. Nature 358:764–768. https://doi.org/10.1038/358764a0

    Article  CAS  PubMed  Google Scholar 

  46. Achour A (2001) Major histocompatibility complex: interaction with peptides. eLS. https://doi.org/10.1038/npg.els.0000922

  47. Burley SK, Berman HM, Kleywegt GJ et al (2017) Protein data Bank (PDB): the single global macromolecular structure archive. Methods Mol Biol 1607:627–641. https://doi.org/10.1007/978-1-4939-7000-1_26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Berman HM (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sinigaglia M, Antunes DA, Rigo MM et al (2013) CrossTope: a curate repository of 3D structures of immunogenic peptide: MHC complexes. Database 2013:bat002. https://doi.org/10.1093/database/bat002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tong JC, Kong L, Tan TW, Ranganathan S (2006) MPID-T: database for sequence-structure-function information on T-cell receptor/peptide/MHC interactions. Appl Bioinforma 5:111–114. https://doi.org/10.2165/00822942-200605020-00005

    Article  CAS  Google Scholar 

  51. Khan JM, Cheruku HR, Tong JC, Ranganathan S (2011) MPID-T2: a database for sequence-structure-function analyses of pMHC and TR/pMHC structures. Bioinformatics 27:1192–1193. https://doi.org/10.1093/bioinformatics/btr104

    Article  CAS  PubMed  Google Scholar 

  52. Kaas Q, Ruiz M, Lefranc M-P (2004) IMGT/3Dstructure-DB and IMGT/StructuralQuery, a database and a tool for immunoglobulin, T cell receptor and MHC structural data. Nucleic Acids Res 32:D208–D210. https://doi.org/10.1093/nar/gkh042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gowthaman R, Pierce BG (2019) TCR3d: the T cell receptor structural repertoire database. Bioinformatics 35:5323–5325. https://doi.org/10.1093/bioinformatics/btz517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Leem J, de Oliveira SHP, Krawczyk K, Deane CM (2018) STCRDab: the structural T-cell receptor database. Nucleic Acids Res 46:D406–D412. https://doi.org/10.1093/nar/gkx971

    Article  CAS  PubMed  Google Scholar 

  55. Borrman T, Cimons J, Cosiano M et al (2017) ATLAS: a database linking binding affinities with structures for wild-type and mutant TCR-pMHC complexes. Proteins 85:908–916. https://doi.org/10.1002/prot.25260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Calis JJA, Maybeno M, Greenbaum JA et al (2013) Properties of MHC class I presented peptides that enhance immunogenicity. PLoS Comput Biol 9:e1003266. https://doi.org/10.1371/journal.pcbi.1003266

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chowell D, Krishna S, Becker PD et al (2015) TCR contact residue hydrophobicity is a hallmark of immunogenic CD8+ T cell epitopes. PNAS 112:E1754–E1762. https://doi.org/10.1073/pnas.1500973112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vita R, Overton JA, Greenbaum JA et al (2015) The immune epitope database (IEDB) 3.0. Nucleic Acids Res 43:D405–D412. https://doi.org/10.1093/nar/gku938

    Article  CAS  PubMed  Google Scholar 

  59. Dhanda SK, Mahajan S, Paul S et al (2019) IEDB-AR: immune epitope database-analysis resource in 2019. Nucleic Acids Res 47:W502–W506. https://doi.org/10.1093/nar/gkz452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nielsen M, Lundegaard C, Worning P et al (2003) Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci 12:1007–1017. https://doi.org/10.1110/ps.0239403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Andreatta M, Nielsen M (2016) Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Bioinformatics 32:511–517. https://doi.org/10.1093/bioinformatics/btv639

    Article  CAS  PubMed  Google Scholar 

  62. Jurtz V, Paul S, Andreatta M et al (2017) NetMHCpan-4.0: improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J Immunol 199:3360–3368. https://doi.org/10.4049/jimmunol.1700893

    Article  CAS  PubMed  Google Scholar 

  63. Karosiene E, Lundegaard C, Lund O, Nielsen M (2012) NetMHCcons: a consensus method for the major histocompatibility complex class I predictions. Immunogenetics 64:177–186. https://doi.org/10.1007/s00251-011-0579-8

    Article  CAS  PubMed  Google Scholar 

  64. O’Donnell TJ, Rubinsteyn A, Bonsack M et al (2018) MHCflurry: open-source class I MHC binding affinity prediction. Cell Syst 7:129–132.e4. https://doi.org/10.1016/j.cels.2018.05.014

    Article  CAS  PubMed  Google Scholar 

  65. Phloyphisut P, Pornputtapong N, Sriswasdi S, Chuangsuwanich E (2019) MHCSeqNet: a deep neural network model for universal MHC binding prediction. BMC Bioinformatics 20:270–210. https://doi.org/10.1186/s12859-019-2892-4

    Article  PubMed  PubMed Central  Google Scholar 

  66. Venkatesh G, Grover A, Srinivasaraghavan G, Rao S (2020) MHCAttnNet: predicting MHC-peptide bindings for MHC alleles classes I and II using an attention-based deep neural model. Bioinformatics 36:i399–i406. https://doi.org/10.1093/bioinformatics/btaa479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Maccari G, Robinson J, Ballingall K et al (2017) IPD-MHC 2.0: an improved inter-species database for the study of the major histocompatibility complex. Nucleic Acids Res 45:D860–D864. https://doi.org/10.1093/nar/gkw1050

    Article  CAS  PubMed  Google Scholar 

  68. Shugay M, Bagaev DV, Zvyagin IV et al (2018) VDJdb: a curated database of T-cell receptor sequences with known antigen specificity. Nucleic Acids Res 46:D419–D427. https://doi.org/10.1093/nar/gkx760

    Article  CAS  PubMed  Google Scholar 

  69. Tickotsky N, Sagiv T, Prilusky J et al (2017) McPAS-TCR: a manually curated catalogue of pathology-associated T cell receptor sequences. Bioinformatics 33:2924–2929. https://doi.org/10.1093/bioinformatics/btx286

    Article  CAS  PubMed  Google Scholar 

  70. Armstrong DR, Berrisford JM, Conroy MJ et al (2020) PDBe: improved findability of macromolecular structure data in the PDB. Nucleic Acids Res 48:D335–D343. https://doi.org/10.1093/nar/gkz990

    Article  CAS  PubMed  Google Scholar 

  71. Velankar S, Alhroub Y, Best C et al (2012) PDBe: Protein Data Bank in Europe. Nucleic Acids Res 40:D445–D452. https://doi.org/10.1093/nar/gkr998

    Article  CAS  PubMed  Google Scholar 

  72. Gutmanas A, Alhroub Y, Battle GM et al (2014) PDBe: Protein Data Bank in Europe. Nucleic Acids Res 42:D285–D291. https://doi.org/10.1093/nar/gkt1180

    Article  CAS  PubMed  Google Scholar 

  73. Velankar S, Best C, Beuth B et al (2010) PDBe: Protein Data Bank in Europe. Nucleic Acids Res 38:D308–D317. https://doi.org/10.1093/nar/gkp916

    Article  CAS  PubMed  Google Scholar 

  74. Wong WK, Marks C, Leem J et al (2020) TCRBuilder: multi-state T-cell receptor structure prediction. Bioinformatics 36:3580–3581. https://doi.org/10.1093/bioinformatics/btaa194

    Article  CAS  PubMed  Google Scholar 

  75. Raman S, Vernon R, Thompson J et al (2009) Structure prediction for CASP8 with all-atom refinement using Rosetta. Proteins 77 Suppl 9:89–99. https://doi.org/10.1002/prot.22540

    Article  CAS  PubMed  Google Scholar 

  76. Mazza C, Auphan-Anezin N, Gregoire C et al (2007) How much can a T-cell antigen receptor adapt to structurally distinct antigenic peptides? EMBO J 26:1972–1983. https://doi.org/10.1038/sj.emboj.7601605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Buckle AM, Borg NA (2018) Integrating experiment and theory to understand TCR-pMHC dynamics. Front Immunol 9:2898. https://doi.org/10.3389/fimmu.2018.02898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Giguère S, Drouin A, Lacoste A et al (2013) MHC-NP: predicting peptides naturally processed by the MHC. J Immunol Methods 400-401:30–36. https://doi.org/10.1016/j.jim.2013.10.003

    Article  CAS  PubMed  Google Scholar 

  79. Paul S, Karosiene E, Dhanda SK et al (2018) Determination of a predictive cleavage motif for eluted major histocompatibility complex class II ligands. Front Immunol 9:1795. https://doi.org/10.3389/fimmu.2018.01795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang Z, Sun H, Yao X et al (2016) Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power. Phys Chem Chem Phys 18:12964–12975. https://doi.org/10.1039/c6cp01555g

    Article  CAS  PubMed  Google Scholar 

  81. Gathiaka S, Liu S, Chiu M et al (2016) D3R grand challenge 2015: evaluation of protein-ligand pose and affinity predictions. J Comput Aided Mol Des 30:651–668. https://doi.org/10.1007/s10822-016-9946-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mey ASJS, Juárez-Jiménez J, Hennessy A, Michel J (2016) Blinded predictions of binding modes and energies of HSP90-α ligands for the 2015 D3R grand challenge. Bioorg Med Chem 24:4890–4899. https://doi.org/10.1016/j.bmc.2016.07.044

    Article  PubMed  Google Scholar 

  83. Xu X, Ma Z, Duan R, Zou X (2019) Predicting protein-ligand binding modes for CELPP and GC3: workflows and insight. J Comput Aided Mol Des 33:367–374. https://doi.org/10.1007/s10822-019-00185-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pagadala NS, Syed K, Tuszynski J (2017) Software for molecular docking: a review. Biophys Rev 9:91–102. https://doi.org/10.1007/s12551-016-0247-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kontoyianni M, McClellan LM, Sokol GS (2004) Evaluation of docking performance: comparative data on docking algorithms. J Med Chem 47:558–565. https://doi.org/10.1021/jm0302997

    Article  CAS  PubMed  Google Scholar 

  86. Khan JM, Ranganathan S (2010) pDOCK: a new technique for rapid and accurate docking of peptide ligands to major histocompatibility complexes. Immunome Res 6 Suppl 1:S2. https://doi.org/10.1186/1745-7580-6-S1-S2

    Article  CAS  PubMed  Google Scholar 

  87. Rigo MM, Antunes DA, de Freitas MV et al (2015) DockTope: a web-based tool for automated pMHC-I modelling. Sci Rep 5:18413. https://doi.org/10.1038/srep18413

    Article  CAS  PubMed  Google Scholar 

  88. London N, Raveh B, Cohen E et al (2011) Rosetta FlexPepDock web server--high resolution modeling of peptide-protein interactions. Nucleic Acids Res 39:W249–W253. https://doi.org/10.1093/nar/gkr431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kyeong H-H, Choi Y, Kim H-S (2018) GradDock: rapid simulation and tailored ranking functions for peptide-MHC class I docking. Bioinformatics 34:469–476. https://doi.org/10.1093/bioinformatics/btx589

    Article  CAS  PubMed  Google Scholar 

  90. Park M-S, Park SY, Miller KR et al (2013) Accurate structure prediction of peptide-MHC complexes for identifying highly immunogenic antigens. Mol Immunol 56:81–90. https://doi.org/10.1016/j.molimm.2013.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yanover C, Bradley P (2011) Large-scale characterization of peptide-MHC binding landscapes with structural simulations. PNAS 108:6981–6986. https://doi.org/10.1073/pnas.1018165108

    Article  PubMed  PubMed Central  Google Scholar 

  92. Abella JR, Antunes DA, Clementi C, Kavraki LE (2019) APE-gen: a fast method for generating ensembles of bound peptide-MHC conformations. Molecules 24:881. https://doi.org/10.3390/molecules24050881

    Article  CAS  PubMed Central  Google Scholar 

  93. Bordner AJ, Abagyan R (2006) Ab initio prediction of peptide-MHC binding geometry for diverse class I MHC allotypes. Proteins 63:512–526. https://doi.org/10.1002/prot.20831

    Article  CAS  PubMed  Google Scholar 

  94. Antunes DA, Devaurs D, Moll M et al (2018) General prediction of peptide-MHC binding modes using incremental docking: a proof of concept. Sci Rep 8:4327. https://doi.org/10.1038/s41598-018-22173-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dhanik A, McMurray JS, Kavraki LE (2013) DINC: a new AutoDock-based protocol for docking large ligands. BMC Struct Biol 13(Suppl 1):S11–S14. https://doi.org/10.1186/1472-6807-13-S1-S11

    Article  PubMed  PubMed Central  Google Scholar 

  96. Antunes DA, Moll M, Devaurs D et al (2017) DINC 2.0: a new protein-peptide docking webserver using an incremental approach. Cancer Res 77:e55–e57. https://doi.org/10.1158/0008-5472.CAN-17-0511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Antes I, Siu SWI, Lengauer T (2006) DynaPred: a structure and sequence based method for the prediction of MHC class I binding peptide sequences and conformations. Bioinformatics 22:e16–e24. https://doi.org/10.1093/bioinformatics/btl216

    Article  CAS  PubMed  Google Scholar 

  98. Abagyan R, Totrov M, Kuznetsov D (1994) Icm - a new method for protein modeling and design - applications to docking and structure prediction from the distorted native conformation. J Comput Chem 15:488–506. https://doi.org/10.1002/jcc.540150503

    Article  CAS  Google Scholar 

  99. Abagyan RA, Totrov M (1999) Ab InitioFolding of peptides by the optimal-Bias Monte Carlo minimization procedure. J Comput Phys 151:402–421. https://doi.org/10.1006/jcph.1999.6233

    Article  CAS  Google Scholar 

  100. Nemethy G, Gibson KD, Palmer KA et al (2002) Energy parameters in polypeptides. 10. Improved geometrical parameters and nonbonded interactions for use in the ECEPP/3 algorithm, with application to proline-containing peptides. J Phys Chem 96:6472–6484. https://doi.org/10.1021/j100194a068

    Article  Google Scholar 

  101. Rudolph MG, Shen LQ, Lamontagne SA et al (2004) A peptide that antagonizes TCR-mediated reactions with both syngeneic and allogeneic agonists: functional and structural aspects. J Immunol 172:2994–3002. https://doi.org/10.4049/jimmunol.172.5.2994

    Article  CAS  PubMed  Google Scholar 

  102. Rückert C, Fiorillo MT, Loll B et al (2006) Conformational dimorphism of self-peptides and molecular mimicry in a disease-associated HLA-B27 subtype. J Biol Chem 281:2306–2316. https://doi.org/10.1074/jbc.M508528200

    Article  CAS  PubMed  Google Scholar 

  103. Meijers R, Lai C-C, Yang Y et al (2005) Crystal structures of murine MHC class I H-2 D(b) and K(b) molecules in complex with CTL epitopes from influenza A virus: implications for TCR repertoire selection and immunodominance. J Mol Biol 345:1099–1110. https://doi.org/10.1016/j.jmb.2004.11.023

    Article  CAS  PubMed  Google Scholar 

  104. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Abraham MJ, Murtola T, Schulz R et al (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2:19–25

    Article  Google Scholar 

  107. Oostenbrink C, Villa A, Mark AE, van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25:1656–1676. https://doi.org/10.1002/jcc.20090

    Article  CAS  PubMed  Google Scholar 

  108. Liu T, Pan X, Chao L et al (2014) Subangstrom accuracy in pHLA-I modeling by Rosetta FlexPepDock refinement protocol. J Chem Inf Model 54:2233–2242. https://doi.org/10.1021/ci500393h

    Article  CAS  PubMed  Google Scholar 

  109. Rohl CA, Strauss CEM, Misura KMS, Baker D (2004) Protein structure prediction using Rosetta. Methods Enzymol 383:66–93. https://doi.org/10.1016/S0076-6879(04)83004-0

    Article  CAS  PubMed  Google Scholar 

  110. Khan AR, Baker BM, Ghosh P et al (2000) The structure and stability of an HLA-A*0201/octameric tax peptide complex with an empty conserved peptide-N-terminal binding site. J Immunol 164:6398–6405. https://doi.org/10.4049/jimmunol.164.12.6398

    Article  CAS  PubMed  Google Scholar 

  111. Canutescu AA, Dunbrack RL (2003) Cyclic coordinate descent: a robotics algorithm for protein loop closure. Protein Sci 12:963–972. https://doi.org/10.1110/ps.0242703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Schmid N, Eichenberger AP, Choutko A et al (2011) Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J 40:843–856. https://doi.org/10.1007/s00249-011-0700-9

    Article  CAS  PubMed  Google Scholar 

  113. Ting D, Wang G, Shapovalov M et al (2010) Neighbor-dependent Ramachandran probability distributions of amino acids developed from a hierarchical Dirichlet process model. PLoS Comput Biol 6:e1000763. https://doi.org/10.1371/journal.pcbi.1000763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Word JM, Lovell SC, Richardson JS, Richardson DC (1999) Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. J Mol Biol 285:1735–1747. https://doi.org/10.1006/jmbi.1998.2401

    Article  CAS  PubMed  Google Scholar 

  115. Eswar N, Eramian D, Webb B et al (2008) Protein structure modeling with MODELLER. In: Biomolecular simulations. Humana Press, Totowa, NJ, pp 145–159

    Google Scholar 

  116. McRobb FM, Capuano B, Crosby IT et al (2010) Homology modeling and docking evaluation of aminergic G protein-coupled receptors. J Chem Inf Model 50:626–637. https://doi.org/10.1021/ci900444q

    Article  CAS  PubMed  Google Scholar 

  117. Case DA, Cheatham TE, Darden T et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688. https://doi.org/10.1002/jcc.20290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wang J, Cieplak P, Kollman PA (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem 21:1049–1074. https://doi.org/10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F

    Article  CAS  Google Scholar 

  119. London N, Movshovitz-Attias D, Schueler-Furman O (2010) The structural basis of peptide-protein binding strategies. Structure 18:188–199. https://doi.org/10.1016/j.str.2009.11.012

    Article  CAS  PubMed  Google Scholar 

  120. Wang C, Bradley P, Baker D (2007) Protein-protein docking with backbone flexibility. J Mol Biol 373:503–519. https://doi.org/10.1016/j.jmb.2007.07.050

    Article  CAS  PubMed  Google Scholar 

  121. Rohl CA, Strauss CEM, Chivian D, Baker D (2004) Modeling structurally variable regions in homologous proteins with rosetta. Proteins 55:656–677. https://doi.org/10.1002/prot.10629

    Article  CAS  PubMed  Google Scholar 

  122. Kuhlman B, Dantas G, Ireton GC et al (2003) Design of a novel globular protein fold with atomic-level accuracy. Science 302:1364–1368. https://doi.org/10.1126/science.1089427

    Article  CAS  PubMed  Google Scholar 

  123. ABAGYAN R, Totrov M (1994) Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. J Mol Biol 235:983–1002. https://doi.org/10.1006/jmbi.1994.1052

    Article  CAS  PubMed  Google Scholar 

  124. Buslepp J, Zhao R, Donnini D et al (2001) T cell activity correlates with oligomeric peptide-major histocompatibility complex binding on T cell surface. J Biol Chem 276:47320–47328. https://doi.org/10.1074/jbc.M109231200

    Article  CAS  PubMed  Google Scholar 

  125. Fodor J, Riley BT, Borg NA, Buckle AM (2018) Previously hidden dynamics at the TCR-peptide-MHC Interface revealed. J Immunol 200:4134–4145. https://doi.org/10.4049/jimmunol.1800315

    Article  CAS  PubMed  Google Scholar 

  126. Shen M-Y, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15:2507–2524. https://doi.org/10.1110/ps.062416606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chys P, Chacón P (2013) Random coordinate descent with spinor-matrices and geometric filters for efficient loop closure. J Chem Theory Comput 9:1821–1829. https://doi.org/10.1021/ct300977f

    Article  CAS  PubMed  Google Scholar 

  128. Eastman P, Swails J, Chodera JD et al (2017) OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLoS Comput Biol 13:e1005659. https://doi.org/10.1371/journal.pcbi.1005659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Antunes DA, Abella JR, Hall-Swan S et al (2020) HLA-arena: a customizable environment for the structural modeling and analysis of peptide-HLA complexes for cancer immunotherapy. JCO Clin Cancer Inform 4:623–636. https://doi.org/10.1200/CCI.19.00123

    Article  PubMed  Google Scholar 

  130. Mackerell AD, Bashford D, Bellott M et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616. https://doi.org/10.1021/jp973084f

    Article  CAS  PubMed  Google Scholar 

  131. Brooks BR, Brooks CL, Mackerell AD et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614. https://doi.org/10.1002/jcc.21287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lee MS, Salsbury FR, Brooks CL (2002) Novel generalized born methods. J Chem Phys 116:10606. https://doi.org/10.1063/1.1480013

    Article  CAS  Google Scholar 

  133. Lee MS, Feig M, Salsbury FR, Brooks CL (2003) New analytic approximation to the standard molecular volume definition and its application to generalized born calculations. J Comput Chem 24:1348–1356. https://doi.org/10.1002/jcc.10272

    Article  CAS  PubMed  Google Scholar 

  134. Desmet J, Wilson IA, Joniau M et al (1997) Computation of the binding of fully flexible peptides to proteins with flexible side chains. FASEB J 11:164–172. https://doi.org/10.1096/fasebj.11.2.9039959

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Lausanne—Department of Oncology UNIL-CHUV, the Ludwig Institute for Cancer Research—Lausanne Branch, the SIB Swiss Institute of Bioinformatics, SNSF grants to VZ (#205321_192019, CRSII5_193749 and CRSK-3_190400) and OM (#31003A_176168), and funds from Research for Life to OM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Olivier Michielin or Vincent Zoete .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Perez, M.A.S., Cuendet, M.A., Röhrig, U.F., Michielin, O., Zoete, V. (2022). Structural Prediction of Peptide–MHC Binding Modes. In: Simonson, T. (eds) Computational Peptide Science. Methods in Molecular Biology, vol 2405. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1855-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1855-4_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1854-7

  • Online ISBN: 978-1-0716-1855-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics