Skip to main content

m6A RNA Immunoprecipitation Followed by High-Throughput Sequencing to Map N6-Methyladenosine

  • Protocol
  • First Online:
Post-Transcriptional Gene Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2404))

Abstract

N6-methyladenosine (m6A) is the most abundant internal modification on messenger RNAs (mRNAs) and long noncoding RNAs (lncRNAs) in eukaryotes. It influences gene expression by regulating RNA processing, nuclear export, mRNA decay, and translation. Hence, m6A controls fundamental cellular processes, and dysregulated deposition of m6A has been acknowledged to play a role in a broad range of human diseases, including cancer. m6A RNA immunoprecipitation followed by high-throughput sequencing (MeRIP-seq or m6A-seq) is a powerful technique to map m6A in a transcriptome-wide level. After immunoprecipitation of fragmented polyadenylated (poly(A)+) rich RNA by using specific anti-m6A antibodies, both the immunoprecipitated RNA fragments together with the input control are subjected to massively parallel sequencing. The generation of such comprehensive methylation profiles of signal enrichment relative to input control is necessary in order to better comprehend the pathogenesis behind aberrant m6A deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boccaletto P, MacHnicka MA, Purta E, Pitkowski P, Baginski B, Wirecki TK, De Crécy-Lagard V, Ross R, Limbach PA, Kotter A, Helm M, Bujnicki JM (2018) MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res 46:D303–D307. https://doi.org/10.1093/nar/gkx1030

    Article  CAS  PubMed  Google Scholar 

  2. Roundtree IA, Evans ME, Pan T, He C (2017) Dynamic RNA modifications in gene expression regulation. Cell 169:1187–1200. https://doi.org/10.1016/j.cell.2017.05.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Huang H, Weng H, Zhou K, Wu T, Zhao BS, Sun M, Chen Z, Deng X, Xiao G, Auer F, Klemm L, Wu H, Zuo Z, Qin X, Dong Y, Zhou Y, Qin H, Tao S, Du J, Liu J, Lu Z, Yin H, Mesquita A, Yuan CL, Hu YC, Sun W, Su R, Dong L, Shen C, Li C, Qing Y, Jiang X, Wu X, Sun M, Guan JL, Qu L, Wei M, Müschen M, Huang G, He C, Yang J, Chen J (2019) Histone H3 trimethylation at lysine 36 guides m6A RNA modification co-transcriptionally. Nature 567:414–419. https://doi.org/10.1038/s41586-019-1016-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ke S, Pandya-Jones A, Saito Y, Fak JJ, Vågbø CB, Geula S, Hanna JH, Black DL, Darnell JE, Darnell RB (2017) m6A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes Dev 31:990–1006. https://doi.org/10.1101/gad.301036.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Knuckles P, Carl SH, Musheev M, Niehrs C, Wenger A, Bühler M (2017) RNA fate determination through cotranscriptional adenosine methylation and microprocessor binding. Nat Struct Mol Biol 24(7):561–569. https://doi.org/10.1038/nsmb.3419

    Article  CAS  PubMed  Google Scholar 

  6. Louloupi A, Ntini E, Conrad T, Ørom UAV (2018) Transient N-6-methyladenosine transcriptome sequencing reveals a regulatory role of m6A in splicing efficiency. Cell Rep 23:3429–3437. https://doi.org/10.1016/j.celrep.2018.05.077

    Article  CAS  PubMed  Google Scholar 

  7. Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, Dai Q, Chen W, He C (2014) A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol 10:93–95. https://doi.org/10.1038/nchembio.1432

    Article  CAS  PubMed  Google Scholar 

  8. Wang P, Doxtader KA, Nam Y (2016) Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol Cell 63:306–317. https://doi.org/10.1016/j.molcel.2016.05.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lence T, Paolantoni C, Worpenberg L, Roignant JY (2019) Mechanistic insights into m 6 a RNA enzymes. Biochim Biophys Acta Gene Regul Mech 1862:222–229. https://doi.org/10.1016/j.bbagrm.2018.10.014

    Article  CAS  PubMed  Google Scholar 

  10. Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang Y-G, He C (2011) N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7:885–887. https://doi.org/10.1038/nchembio.687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vågbø CB, Shi Y, Wang WL, Song SH, Lu Z, Bosmans RPG, Dai Q, Hao YJ, Yang X, Zhao WM, Tong WM, Wang XJ, Bogdan F, Furu K, Fu Y, Jia G, Zhao X, Liu J, Krokan HE, Klungland A, Yang YG, He C (2013) ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49:18–29. https://doi.org/10.1016/j.molcel.2012.10.015

    Article  CAS  PubMed  Google Scholar 

  12. Du H, Zhao Y, He J, Zhang Y, Xi H, Liu M, Ma J, Wu L (2016) YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4–NOT deadenylase complex. Nat Commun 7:12626. https://doi.org/10.1038/ncomms12626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, He C (2017) YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res 27(3):315–328. https://doi.org/10.1038/cr.2017.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li A, Chen Y-S, Ping X-L, Yang X, Xiao W, Yang Y, Sun H-Y, Zhu Q, Baidya P, Wang X, Bhattarai DP, Zhao Y-L, Sun B-F, Yang Y-G (2017) Cytoplasmic m6A reader YTHDF3 promotes mRNA translation. Cell Res 1:1–4. https://doi.org/10.1038/cr.2017.10

    Article  CAS  Google Scholar 

  15. Lesbirel S, Wilson SA (2018) The m6A-methylase complex and mRNA export. Biochim Biophys Acta Gene Regul Mech 1862(3):319–328. https://doi.org/10.1016/j.bbagrm.2018.09.008

    Article  CAS  PubMed  Google Scholar 

  16. Roundtree IA, Luo G-Z, Zhang Z, Wang X, Zhou T, Cui Y, Sha J, Huang X, Guerrero L, Xie P, He E, Bin Shen CH (2017) YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. Elife 6:e31311

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, Ren B, Pan T, He C (2014) N 6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505:117–120. https://doi.org/10.1038/nature12730

    Article  CAS  PubMed  Google Scholar 

  18. Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H, He C (2015) N6-methyladenosine modulates messenger RNA translation efficiency. Cell 161:1388–1399. https://doi.org/10.1016/j.cell.2015.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Batista PJ, Molinie B, Wang J, Qu K, Zhang J, Li L, Bouley DM, Lujan E, Haddad B, Daneshvar K, Carter AC, Flynn RA, Zhou C, Lim KS, Dedon P, Wernig M, Mullen AC, Xing Y, Giallourakis CC, Chang HY (2014) M6A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell 15:707–719. https://doi.org/10.1016/j.stem.2014.09.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Geula S, Moshitch-Moshkovitz S, Dominissini D, Mansour AAF, Kol N, Salmon-Divon M, Hershkovitz V, Peer E, Mor N, Manor YS, Ben-Haim MS, Eyal E, Yunger S, Pinto Y, Jaitin DA, Viukov S, Rais Y, Krupalnik V, Chomsky E, Zerbib M, Maza I, Rechavi Y, Massarwa R, Hanna S, Amit I, Levanon EY, Amariglio N, Stern-Ginossar N, Novershtern N, Rechavi G, Hanna JH (2015) m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science 347:1002–1006. https://doi.org/10.1126/science.1261417

    Article  CAS  PubMed  Google Scholar 

  21. Aguilo F, Zhang F, Sancho A, Fidalgo M, Di Cecilia S, Vashisht A, Lee D, Chen C, Rengasamy M, Jahouh F, Roman A, Krig SR, Wang R, Zhang W, Wohlschlegel JA, Wang J, Walsh MJ (2015) Coordination of m6 a mRNA methylation and gene transcription by ZFP217 regulates pluripotency and reprogramming. Cell Stem Cell 17:689–704. https://doi.org/10.1016/j.stem.2015.09.005.Coordination

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Malla S, Melguizo-Sanchis D, Aguilo F (2018) Steering pluripotency and differentiation with N6-methyladenosine RNA modification. Biochim Biophys Acta Gene Regul Mech 1862(3):394–340. https://doi.org/10.1016/j.bbagrm.2018.10.013

    Article  CAS  PubMed  Google Scholar 

  23. Aguilo F, Walsh MJ (2017) ScienceDirect the N 6 -Methyladenosine RNA modification in pluripotency and reprogramming. Curr Opin Genet Dev 46:77–82. https://doi.org/10.1016/j.gde.2017.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fustin JM, Doi M, Yamaguchi Y, Hida H, Nishimura S, Yoshida M, Isagawa T, Morioka MS, Kakeya H, Manabe I, Okamura H (2013) RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell 155:793–806. https://doi.org/10.1016/j.cell.2013.10.026

    Article  CAS  PubMed  Google Scholar 

  25. Tang C, Klukovich R, Peng H, Wang Z, Yu T, Zhang Y, Zheng H (2017) Splicing and stability of long 3 ′ -UTR mRNAs in male germ cells. Proc Natl Acad Sci U S A 115(2):E325–E333. https://doi.org/10.1073/pnas.1717794115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lin S, Choe J, Du P, Triboulet R, Gregory RI, Lin S, Choe J, Du P, Triboulet R, Gregory RI (2016) The m 6 a methyltransferase METTL3 promotes translation in human cancer cells article the m 6 a methyltransferase METTL3 promotes translation in human cancer cells. Mol Cell:1–11. https://doi.org/10.1016/j.molcel.2016.03.021

  27. Cui Q, Shi H, Ye P, Li L, Qu Q, Sun G, Sun G, Lu Z, Huang Y, Yang C-G, Riggs AD, He C, Shi Y (2017) M 6 a RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep 18:2622–2634. https://doi.org/10.1016/j.celrep.2017.02.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xie W, Ma LL, Xu YQ, Wang BH, Li SM (2019) METTL3 inhibits hepatic insulin sensitivity via N6-methyladenosine modification of Fasn mRNA and promoting fatty acid metabolism. Biochem Biophys Res Commun 518:120–126. https://doi.org/10.1016/j.bbrc.2019.08.018

    Article  CAS  PubMed  Google Scholar 

  29. Desrosiers R, Friderici K, Rottman F (1974) Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci U S A 71:3971–3975. https://doi.org/10.1073/pnas.71.10.3971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Perry RP, Kelley DE (1974) Existence of methylated messenger RNA in mouse L cells. Cell 1:37–42. https://doi.org/10.1016/0092-8674(74)90153-6

    Article  CAS  Google Scholar 

  31. Lavi S, Shatkin AJ (1975) Methylated simian virus 40 specific RNA from nuclei and cytoplasm of infected BSC 1 cells. Proc Natl Acad Sci U S A 72:2012–2016. https://doi.org/10.1073/pnas.72.6.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wei C-M, Gershowitz A, Moss B (1975) Methylated nucleotides block 5′ terminus of HeLa cell messenger RNA. Cell 4:379–386. https://doi.org/10.1016/0092-8674(75)90158-0

    Article  CAS  PubMed  Google Scholar 

  33. Wei CM, Moss B (1977) Nucleotide sequences at the N6-Methyladenosine sites of HeLa cell messenger ribonucleic acid. Biochemistry 16:1672–1676. https://doi.org/10.1021/bi00627a023

    Article  CAS  PubMed  Google Scholar 

  34. Schibler U, Kelley DE, Perry RP (1977) Comparison of methylated sequences in messenger RNA and heterogeneous nuclear RNA from mouse L cells. J Mol Biol 115:695–714. https://doi.org/10.1016/0022-2836(77)90110-3

    Article  CAS  PubMed  Google Scholar 

  35. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149:1635–1646. https://doi.org/10.1016/j.cell.2012.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, Sorek R, Rechavi G (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485:201–206. https://doi.org/10.1038/nature11112

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Knut and Alice Wallenberg Foundation, Umeå University, Västerbotten County Council, Swedish Research Council (2017-01636), Kempe Foundation (SMK-1766), and Cancerfonden (19 0337 Pj).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Aguilo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bhattarai, D.P., Aguilo, F. (2022). m6A RNA Immunoprecipitation Followed by High-Throughput Sequencing to Map N6-Methyladenosine. In: Dassi, E. (eds) Post-Transcriptional Gene Regulation. Methods in Molecular Biology, vol 2404. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1851-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1851-6_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1850-9

  • Online ISBN: 978-1-0716-1851-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics