Skip to main content

Quantitative Measurements of Membrane Lipid Order in Yeast and Fungi

  • Protocol
  • First Online:
Membrane Lipids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2402))

Abstract

Membrane lateral heterogeneity, historically referred to as the lipid raft hypothesis, has been extensively investigated through physiochemical experiments on model membranes. Currently, the basic principles are well understood; however, the physiological relevance of these structures in living organisms is still not clear. Thus, studying membrane organization in vivo is extremely important and elucidates the role of such structures in various membrane-associated processes. This is particularly true when a whole single-celled organism can be studied rather than an isolated cell. The ordered and disordered membrane phases are characterized by the degree of acyl chain packing in the lipid bilayer. Polar water molecules can penetrate into the low-density lipid packing of the disordered phase, but are more excluded from the tightly packed ordered phase. Here, polarity-sensitive probes, embedded in the lipid bilayer, are used to report on membrane organization and to quantitate this parameter via 2-channel fluorescence microscopy. Coupling genetic approaches, which are easily accessible in yeast model organisms, with the imaging approach described here provides a great opportunity to investigate how membrane heterogeneity impacts physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levental K, Levental R, Heberle FA (2020) Lipid rafts: controversies resolved, mysteries remain. Trends Cell Biol 30(5):341–353

    Article  CAS  Google Scholar 

  2. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387(6633):569–572

    Article  CAS  Google Scholar 

  3. Brown DA, London E (Jul. 1998) Structure and origin of ordered lipid domains in biological membranes. J Membr Biol 164(2):103–114

    Article  CAS  Google Scholar 

  4. Jacobson K, Mouritsen OG, Anderson RGW (2007) Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9(1):7–14

    Article  CAS  Google Scholar 

  5. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1(1):31–39

    Article  CAS  Google Scholar 

  6. Diaz-Rohrer B, Levental KR, Levental I (2014) Rafting through traffic: membrane domains in cellular logistics. Biochim Biophys Acta Biomembr 1838(12):3003–3013

    Article  CAS  Google Scholar 

  7. Szlasa W, Zendran I, Zalesińska A, Tarek M, Kulbacka J (2020) Lipid composition of the cancer cell membrane. J Bioenerg Biomembr 52(5):321–342

    Article  CAS  Google Scholar 

  8. Owen DM et al (2010) High plasma membrane lipid order imaged at the immunological synapse periphery in live T cells. Mol Membr Biol 27(4–6):178–189

    Article  CAS  Google Scholar 

  9. Rentero C et al (2008) Functional implications of plasma membrane condensation for T cell activation. PLoS One 3(5):e2262

    Article  Google Scholar 

  10. Abu-Siniyeh A et al (2016) The aPKC/Par3/Par6 polarity complex and membrane order are functionally interdependent in epithelia during vertebrate organogenesis. Traffic 17(1):66–79

    Article  CAS  Google Scholar 

  11. Yang S-T, Kreutzberger AJB, Kiessling V, Ganser-Pornillos BK, White JM, Tamm LK (2017) HIV virions sense plasma membrane heterogeneity for cell entry. Sci Adv 3(6):e1700338

    Article  Google Scholar 

  12. Marek M, Vincenzetti V, Martin SG (2020) Sterol biosensor reveals LAM-family Ltc1-dependent sterol flow to endosomes upon Arp2/3 inhibition. J Cell Biol 219(6)

    Google Scholar 

  13. Clay L et al (2014) A sphingolipid-dependent diffusion barrier confines ER stress to the yeast mother cell. elife 3:e01883

    Article  Google Scholar 

  14. Kučerka N, Nieh M-P, Katsaras J (2011) Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature. Biochim Biophys Acta Biomembr 1808(11):2761–2771

    Article  Google Scholar 

  15. Jin L et al (2006) Characterization and application of a new optical probe for membrane lipid domains. Biophys J 90(7):2563–2575

    Article  CAS  Google Scholar 

  16. Owen DM, Rentero C, Magenau A, Abu-Siniyeh A, Gaus K (2012) Quantitative imaging of membrane lipid order in cells and organisms. Nat Protoc 7(1):24–35

    Article  CAS  Google Scholar 

  17. Owen DM, Williamson D, Magenau A, Gaus K (2012) Optical techniques for imaging membrane domains in live cells (live-cell palm of protein clustering). Methods Enzymol 504:221–235

    Article  CAS  Google Scholar 

  18. Owen DM et al (2006) Fluorescence lifetime imaging provides enhanced contrast when imaging the phase-sensitive dye di-4-ANEPPDHQ in model membranes and live cells. Biophys J 90(11):L80–L82

    Article  CAS  Google Scholar 

  19. Makarova M et al (2020) Delineating the rules for structural adaptation of membrane-associated proteins to evolutionary changes in membrane lipidome. Curr Biol 30(3):367–380.e8

    Article  CAS  Google Scholar 

  20. Siafakas AR, Wright LC, Sorrell TC, Djordjevic JT (2006) Lipid rafts in Cryptococcus neoformans concentrate the virulence determinants phospholipase B1 and Cu/Zn superoxide dismutase. Eukaryot Cell 5(3):488–498

    Article  CAS  Google Scholar 

  21. Merlini L, Vjestica A, Dudin O, Bendezú F, Martin SG (2017) Live cell imaging of the schizosaccharomyces pombe sexual life cycle. Cold Spring Harb Protoc 2017(10):pdb.prot090225

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Makarova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Makarova, M., Owen, D.M. (2022). Quantitative Measurements of Membrane Lipid Order in Yeast and Fungi. In: Cranfield, C.G. (eds) Membrane Lipids. Methods in Molecular Biology, vol 2402. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1843-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1843-1_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1842-4

  • Online ISBN: 978-1-0716-1843-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics