Skip to main content

Supervised Methods for Biomarker Detection from Microarray Experiments

  • Protocol
  • First Online:
Microarray Data Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2401))

Abstract

Biomarkers are valuable indicators of the state of a biological system. Microarray technology has been extensively used to identify biomarkers and build computational predictive models for disease prognosis, drug sensitivity and toxicity evaluations. Activation biomarkers can be used to understand the underlying signaling cascades, mechanisms of action and biological cross talk. Biomarker detection from microarray data requires several considerations both from the biological and computational points of view. In this chapter, we describe the main methodology used in biomarkers discovery and predictive modeling and we address some of the related challenges. Moreover, we discuss biomarker validation and give some insights into multiomics strategies for biomarker detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Strimbu K, Tavel JA (2010) What are biomarkers? Curr Opin HIV AIDS 5:463–466

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gupta RC (2014) Introduction. In: Biomarkers in toxicology. Elsevier, pp 3–5

    Chapter  Google Scholar 

  3. Califf RM (2018) Biomarker definitions and their applications. Exp Biol Med 243:213–221

    Article  CAS  Google Scholar 

  4. Torres R, Judson-Torres RL (2019) Research techniques made simple: feature selection for biomarker discovery. J Invest Dermatol 139:2068–2074.e1

    Article  CAS  PubMed  Google Scholar 

  5. Shahrjooihaghighi A, Frigui H, Zhang X et al (2017) An ensemble feature selection method for biomarker discovery. Proc IEEE Int Symp Signal Proc Inf Tech 2017:416–421

    PubMed  Google Scholar 

  6. Deng X, Campagne F (2010) Introduction to the development and validation of predictive biomarker models from high-throughput data sets. Methods Mol Biol 620:435–470

    Article  CAS  PubMed  Google Scholar 

  7. McDermott JE, Wang J, Mitchell H et al (2013) Challenges in biomarker discovery: combining expert insights with statistical analysis of complex omics data. Expert Opin Med Diagn 7:37–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Piatetsky-Shapiro G, Tamayo P (2003) Microarray data mining. SIGKDD Explor Newsl 5:1

    Article  Google Scholar 

  9. Deyati A, Younesi E, Hofmann-Apitius M et al (2013) Challenges and opportunities for oncology biomarker discovery. Drug Discov Today 18:614–624

    Article  CAS  PubMed  Google Scholar 

  10. Kinaret PAS, Serra A, Federico A et al (2020) Transcriptomics in toxicogenomics, part I: experimental design, technologies, publicly available data, and regulatory aspects. Nanomaterials 10:750

    Article  CAS  PubMed Central  Google Scholar 

  11. Federico A, Serra A, Ha MK et al (2020) Transcriptomics in toxicogenomics, part II: preprocessing and differential expression analysis for high quality data. Nanomaterials 10:903

    Article  CAS  PubMed Central  Google Scholar 

  12. Serra A, Fratello M, Cattelani L et al (2020) Transcriptomics in toxicogenomics, part III: data modelling for risk assessment. Nanomaterials 10:708

    Article  CAS  PubMed Central  Google Scholar 

  13. Serra A, Galdi P, Tagliaferri R (2018) Machine learning for bioinformatics and neuroimaging. WIREs Data Mining Knowl Discov 8:e1248

    Article  Google Scholar 

  14. Saeys Y, Inza I, Larrañaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23:2507–2517

    Article  CAS  PubMed  Google Scholar 

  15. Hall MA, Smith LA (1998) Practical feature subset selection for machine learning. In: McDonald C (ed) Computer science ’98 proceedings of the 21st australasian computer science conference ACSC’98, Perth, 4–6 February, 1998. Springer, Berlin, pp 181–191

    Google Scholar 

  16. Yu L, Liu H (2003) Feature selection for high-dimensional data: a fast correlation-based filter solution. In: Fawcett T, Mishra N (eds) Proceedings, twentieth international conference on machine learning. Amer Assn for Artificial, Menlo Park, CA, pp 856–863

    Google Scholar 

  17. Kononenko I (1994) Estimating attributes: analysis and extensions of RELIEF. In: Bergadano F, Raedt L (eds) Machine learning: ECML-94. Springer, Berlin, pp 171–182

    Chapter  Google Scholar 

  18. Peng H, Long F, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27:1226–1238

    Article  PubMed  Google Scholar 

  19. Somol P, Pudil P, Novovičová J et al (1999) Adaptive floating search methods in feature selection. Pattern Recognit Lett 20:1157–1163

    Article  Google Scholar 

  20. Borboudakis G, Tsamardinos I (2019) Forward-backward selection with early dropping. J Mach Learn Res 20:276–314

    Google Scholar 

  21. Sanz H, Valim C, Vegas E et al (2018) SVM-RFE: selection and visualization of the most relevant features through non-linear kernels. BMC Bioinformatics 19:432

    Article  PubMed  PubMed Central  Google Scholar 

  22. Annavarapu CSR, Dara S, Banka H (2016) Cancer microarray data feature selection using multi-objective binary particle swarm optimization algorithm. Excli J 15:460–473

    PubMed  PubMed Central  Google Scholar 

  23. Chuang L-Y, Yang C-H, Li J-C et al (2012) A hybrid BPSO-CGA approach for gene selection and classification of microarray data. J Comput Biol 19:68–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fortino V, Scala G, Greco D (2020) Feature set optimization in biomarker discovery from genome-scale data. Bioinformatics 36:3393–3400

    Article  CAS  PubMed  Google Scholar 

  25. Breiman L (2001) Random forests. Machine Learn 45:5–32

    Article  Google Scholar 

  26. Chen X, Ishwaran H (2012) Random forests for genomic data analysis. Genomics 99:323–329

    Article  CAS  PubMed  Google Scholar 

  27. Fratello M, Tagliaferri R (2019) Decision trees and random forests. In: Encyclopedia of bioinformatics and computational biology. Elsevier, pp 374–383

    Chapter  Google Scholar 

  28. Hastie T (2020) Ridge regularization: an essential concept in data science. Technometrics:1–8

    Google Scholar 

  29. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Royal Stat Soc B 58:267–288

    Google Scholar 

  30. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J Royal Stat Soc B 67:301–320

    Article  Google Scholar 

  31. Larrañaga P, Calvo B, Santana R et al (2006) Machine learning in bioinformatics. Brief Bioinform 7:86–112

    Article  PubMed  Google Scholar 

  32. Tolios A, De Las RJ, Hovig E et al (2020) Computational approaches in cancer multidrug resistance research: identification of potential biomarkers, drug targets and drug-target interactions. Drug Resist Updat 48:100662

    Article  CAS  PubMed  Google Scholar 

  33. Park H, Shiraishi Y, Imoto S et al (2017) A novel adaptive penalized logistic regression for uncovering biomarker associated with anti-cancer drug sensitivity. IEEE/ACM Trans Comput Biol Bioinform 14:771–782

    Article  PubMed  Google Scholar 

  34. Cervantes J, Garcia-Lamont F, Rodríguez-Mazahua L et al (2020) A comprehensive survey on support vector machine classification: applications, challenges and trends. Neurocomputing 408:189–215

    Article  Google Scholar 

  35. Zheng D, Ding Y, Ma Q et al (2018) Identification of serum microRNAs as novel biomarkers in esophageal squamous cell carcinoma using feature selection algorithms. Front Oncol 8:674

    Article  PubMed  Google Scholar 

  36. Su R, Liu X, Wei L et al (2019) Deep-resp-forest: a deep forest model to predict anti-cancer drug response. Methods 166:91–102

    Article  CAS  PubMed  Google Scholar 

  37. Zhou ZH, Feng J (2019) Deep forest. Natl Sci Rev 6(1):74–86

    Google Scholar 

  38. Abiodun OI, Jantan A, Omolara AE et al (2018) State-of-the-art in artificial neural network applications: a survey. Heliyon 4:e00938

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang H, Liu R, Schyman P et al (2019) Deep neural network models for predicting chemically induced liver toxicity endpoints from transcriptomic responses. Front Pharmacol 10:42

    Article  PubMed  PubMed Central  Google Scholar 

  40. Raies AB, Bajic VB (2016) In silico toxicology: computational methods for the prediction of chemical toxicity. Wiley Interdiscip Rev Comput Mol Sci 6:147–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Maunz A, Helma C (2008) Prediction of chemical toxicity with local support vector regression and activity-specific kernels. SAR QSAR Environ Res 19:413–431

    Article  CAS  PubMed  Google Scholar 

  42. Xu Y, Pei J, Lai L (2017) Deep learning based regression and multiclass models for acute oral toxicity prediction with automatic chemical feature extraction. J Chem Inf Model 57:2672–2685

    Article  CAS  PubMed  Google Scholar 

  43. Ding MQ, Chen L, Cooper GF et al (2018) Precision oncology beyond targeted therapy: combining omics data with machine learning matches the majority of cancer cells to effective therapeutics. Mol Cancer Res 16:269–278

    Article  CAS  PubMed  Google Scholar 

  44. Geeleher P, Cox NJ, Huang RS (2014) Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines. Genome Biol 15:R47

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhang W, Tang J, Wang N (2016) Using the machine learning approach to predict patient survival from high-dimensional survival data. In: 2016 IEEE international conference on bioinformatics and biomedicine (BIBM). IEEE, pp 1234–1238

    Chapter  Google Scholar 

  46. Tong Z, Liu Y, Ma H et al (2020) Development, validation and comparison of artificial neural network models and logistic regression models predicting survival of unresectable pancreatic cancer. Front Bioeng Biotechnol 8:196

    Article  PubMed  PubMed Central  Google Scholar 

  47. Serra A, Saarimäki LA, Fratello M et al (2020) BMDx: a graphical Shiny application to perform Benchmark Dose analysis for transcriptomics data. Bioinformatics 36:2932–2933

    Article  CAS  PubMed  Google Scholar 

  48. Kuo B, Francina Webster A, Thomas RS et al (2016) BMDExpress Data Viewer—a visualization tool to analyze BMDExpress datasets. J Appl Toxicol 36:1048–1059

    Article  CAS  PubMed  Google Scholar 

  49. Serra A, Fratello M, Del Giudice G et al (2020) TinderMIX: time-dose integrated modelling of toxicogenomics data. Gigascience 9:giaa055

    Article  PubMed  PubMed Central  Google Scholar 

  50. Saarimäki LA, Kinaret PAS, Scala G et al (2020) Toxicogenomics analysis of dynamic dose-response in macrophages highlights molecular alterations relevant for multi-walled carbon nanotube-induced lung fibrosis. NanoImpact 20:100274

    Article  Google Scholar 

  51. Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33:1–22

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jang IS, Neto EC, Guinney J et al (2014) Systematic assessment of analytical methods for drug sensitivity prediction from cancer cell line data. Pac Symp Biocomput:63–74

    Google Scholar 

  53. Galdi P, Tagliaferri R (2019) Data mining: accuracy and error measures for classification and prediction. In: Encyclopedia of bioinformatics and computational biology. Elsevier, pp 431–436

    Chapter  Google Scholar 

  54. Handelman GS, Kok HK, Chandra RV et al (2019) Peering into the black box of artificial intelligence: evaluation metrics of machine learning methods. AJR Am J Roentgenol 212:38–43

    Article  PubMed  Google Scholar 

  55. Chicco D (2017) Ten quick tips for machine learning in computational biology. BioData Min 10:35

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tharwat A, Moemen YS, Hassanien AE (2016) A predictive model for toxicity effects assessment of biotransformed hepatic drugs using iterative sampling method. Sci Rep 6:38660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tharwat A, Moemen YS, Hassanien AE (2017) Classification of toxicity effects of biotransformed hepatic drugs using whale optimized support vector machines. J Biomed Inform 68:132–149

    Article  PubMed  Google Scholar 

  58. Eitrich T, Kless A, Druska C et al (2007) Classification of highly unbalanced CYP450 data of drugs using cost sensitive machine learning techniques. J Chem Inf Model 47:92–103

    Article  CAS  PubMed  Google Scholar 

  59. Lunardon N, Menardi G, Torelli N (2014) ROSE: a package for binary imbalanced learning. R J 6:79

    Article  Google Scholar 

  60. Menardi G, Torelli N (2014) Training and assessing classification rules with imbalanced data. Data Min Knowl Discov 28:92–122

    Article  Google Scholar 

  61. Chawla NV, Bowyer KW, Hall LO et al (2002) SMOTE: Synthetic Minority Over-sampling Technique. jair 16:321–357

    Article  Google Scholar 

  62. Kovács G (2019) An empirical comparison and evaluation of minority oversampling techniques on a large number of imbalanced datasets. Appl Soft Comput 83:105662

    Article  Google Scholar 

  63. Matthews BW (1975) Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta 405:442–451

    Article  CAS  PubMed  Google Scholar 

  64. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: Data mining, inference, and prediction, second edition (2nd ed.). Springer

    Google Scholar 

  65. van Gool AJ, Bietrix F, Caldenhoven E et al (2017) Bridging the translational innovation gap through good biomarker practice. Nat Rev Drug Discov 16:587–588

    Article  PubMed  Google Scholar 

  66. McShane LM, Cavenagh MM, Lively TG et al (2013) Criteria for the use of omics-based predictors in clinical trials. Nature 502:317–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Taylor JMG, Ankerst DP, Andridge RR (2008) Validation of biomarker-based risk prediction models. Clin Cancer Res 14:5977–5983

    Article  PubMed  PubMed Central  Google Scholar 

  68. Athar A, Füllgrabe A, George N et al (2019) ArrayExpress update—from bulk to single-cell expression data. Nucleic Acids Res 47:D711–D715

    Article  CAS  PubMed  Google Scholar 

  69. Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schmidt EE, Pelz O, Buhlmann S et al (2013) GenomeRNAi: a database for cell-based and in vivo RNAi phenotypes, 2013 update. Nucleic Acids Res 41:D1021–D1026

    Article  CAS  PubMed  Google Scholar 

  71. Tryka KA, Hao L, Sturcke A et al (2014) NCBI’s database of genotypes and phenotypes: dbGaP. Nucleic Acids Res 42:D975–D979

    Article  CAS  PubMed  Google Scholar 

  72. Ohno-Machado L, Sansone S-A, Alter G et al (2017) Finding useful data across multiple biomedical data repositories using DataMed. Nat Genet 49:816–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Perez-Riverol Y, Bai M, da Veiga Leprevost F et al (2017) Discovering and linking public omics data sets using the Omics Discovery Index. Nat Biotechnol 35:406–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sun X, Pittard WS, Xu T et al (2017) Omicseq: a web-based search engine for exploring omics datasets. Nucleic Acids Res 45:W445–W452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Khomtchouk B, Vand KA, Wahlestedt T et al (2016) PubData: search engine for bioinformatics databases worldwide. BioRxiv

    Google Scholar 

  76. Quezada H, Guzmán-Ortiz AL, Díaz-Sánchez H et al (2017) Omics-based biomarkers: current status and potential use in the clinic. Bol Med Hosp Infant Mex 74:219–226

    PubMed  Google Scholar 

  77. Olivier M, Asmis R, Hawkins GA et al (2019) The need for multi-omics biomarker signatures in precision medicine. Int J Mol Sci 20:4781

    Article  CAS  PubMed Central  Google Scholar 

  78. Serra A, Galdi P, Tagliaferri R (2019) Multiview learning in biomedical applications. In: Artificial intelligence in the age of neural networks and brain computing. Elsevier, pp 265–280

    Chapter  Google Scholar 

  79. Fan Z, Zhou Y, Ressom HW (2020) MOTA: network-based multi-omic data integration for biomarker discovery. Metabolites 10(4):144

    Article  CAS  PubMed Central  Google Scholar 

  80. Nicora G, Vitali F, Dagliati A et al (2020) Integrated multi-omics analyses in oncology: a review of machine learning methods and tools. Front Oncol 10:1030

    Article  PubMed  PubMed Central  Google Scholar 

  81. Lin E, Lane HY (2017) Machine learning and systems genomics approaches for multi-omics data. Biomark Res 5(1):1–6

    Google Scholar 

  82. Serra A, Fratello M, Fortino V et al (2015) MVDA: a multi-view genomic data integration methodology. BMC Bioinformatics 16:261

    Article  PubMed  PubMed Central  Google Scholar 

  83. Pavlidis P, Weston J, Cai J et al (2001) Gene functional classification from heterogeneous data. In: Proceedings of the fifth annual international conference on Computational biology—RECOMB ’01. ACM Press, New York, NY, pp 249–255

    Chapter  Google Scholar 

  84. El-Manzalawy Y, Hsieh T-Y, Shivakumar M et al (2018) Min-redundancy and max-relevance multi-view feature selection for predicting ovarian cancer survival using multi-omics data. BMC Med Genomics 11:71

    Article  PubMed  PubMed Central  Google Scholar 

  85. El-Manzalawy Y (2018) CCA based multi-view feature selection for multi-omics data integration. BioRxiv

    Google Scholar 

  86. Wang, Z, Yuan W, Montana G (2015) Sparse multi-view matrix factorization: a multivariate approach to multiple tissue comparisons. Bioinformatics 31(19):3163–3171

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Greco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Serra, A., Cattelani, L., Fratello, M., Fortino, V., Kinaret, P.A.S., Greco, D. (2022). Supervised Methods for Biomarker Detection from Microarray Experiments. In: Agapito, G. (eds) Microarray Data Analysis. Methods in Molecular Biology, vol 2401. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1839-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1839-4_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1838-7

  • Online ISBN: 978-1-0716-1839-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics