Skip to main content

Computational Systems Biology of Morphogenesis

  • Protocol
  • First Online:
Computational Systems Biology in Medicine and Biotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2399))

Abstract

Extracting mechanistic knowledge from the spatial and temporal phenotypes of morphogenesis is a current challenge due to the complexity of biological regulation and their feedback loops. Furthermore, these regulatory interactions are also linked to the biophysical forces that shape a developing tissue, creating complex interactions responsible for emergent patterns and forms. Here we show how a computational systems biology approach can aid in the understanding of morphogenesis from a mechanistic perspective. This methodology integrates the modeling of tissues and whole-embryos with dynamical systems, the reverse engineering of parameters or even whole equations with machine learning, and the generation of precise computational predictions that can be tested at the bench. To implement and perform the computational steps in the methodology, we present user-friendly tools, computer code, and guidelines. The principles of this methodology are general and can be adapted to other model organisms to extract mechanistic knowledge of their morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lobo D, Levin M (2017) Computing a worm: reverse-engineering planarian regeneration. In: Adamatzky A (ed) Advances in unconventional computing. Volume 2: prototypes, models and algorithms. Springer International Publishing, Switzerland, pp 637–654

    Chapter  Google Scholar 

  2. Rubin BP, Brockes J, Galliot B et al (2015) A dynamic architecture of life. F1000Res 4:1288

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lobo D, Solano M, Bubenik GA et al (2014) A linear-encoding model explains the variability of the target morphology in regeneration. J R Soc Interface 11:20130918

    Article  PubMed  PubMed Central  Google Scholar 

  4. McLaughlin KA, Levin M (2018) Bioelectric signaling in regeneration: mechanisms of ionic controls of growth and form. Dev Biol 433:177–189

    Article  CAS  PubMed  Google Scholar 

  5. Chiou K, Collins E-MS (2018) Why we need mechanics to understand animal regeneration. Dev Biol 433:155–165

    Article  CAS  PubMed  Google Scholar 

  6. Stiehl T, Marciniak-Czochra A (2017) Stem cell self-renewal in regeneration and cancer: insights from mathematical modeling. Curr Opin Syst Biol 5:112–120

    Article  Google Scholar 

  7. Sharpe J (2017) Computer modeling in developmental biology: growing today, essential tomorrow. Development 144:4214–4225

    Article  CAS  PubMed  Google Scholar 

  8. Herath S, Lobo D (2020) Cross-inhibition of Turing patterns explains the self-organized regulatory mechanism of planarian fission. J Theor Biol 485:110042

    Article  CAS  PubMed  Google Scholar 

  9. Bartocci E, Lió P (2016) Computational modeling, formal analysis, and tools for systems biology. PLoS Comput Biol 12:e1004591

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kitano H (2002) Computational systems biology. Nature 420:206–210

    Article  CAS  PubMed  Google Scholar 

  11. Thieffry D (2007) Dynamical roles of biological regulatory circuits. Brief Bioinform 8:220–225

    Article  CAS  PubMed  Google Scholar 

  12. Jiménez A, Munteanu A, Sharpe J (2015) Dynamics of gene circuits shapes evolvability. Proc Natl Acad Sci 112:201411065

    Article  Google Scholar 

  13. Economou AD, Ohazama A, Porntaveetus T et al (2012) Periodic stripe formation by a Turing mechanism operating at growth zones in the mammalian palate. Nat Genet 44:348–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sheth R, Marcon L, Bastida MF et al (2012) Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism. Science 338:1476–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Prusinkiewicz P, Erasmus Y, Lane B et al (2007) Evolution and development of inflorescence architectures. Science 316:1452–1456

    Article  CAS  PubMed  Google Scholar 

  16. Jiménez A, Cotterell J, Munteanu A et al (2017) A spectrum of modularity in multi-functional gene circuits. Mol Syst Biol 13:925

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lobo D, Levin M (2015) Inferring regulatory networks from experimental morphological phenotypes: a computational method reverse-engineers planarian regeneration. PLoS Comput Biol 11:e1004295

    Article  PubMed  PubMed Central  Google Scholar 

  18. Uzkudun M, Marcon L, Sharpe J (2015) Data-driven modelling of a gene regulatory network for cell fate decisions in the growing limb bud. Mol Syst Biol 11:815–815

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jaeger J, Crombach A (2012) Life’s attractors: understanding developmental systems through reverse engineering and in silico evolution. In: Soyer OS (ed) Evolutionary systems biology. Springer, New York, pp 93–119

    Chapter  Google Scholar 

  20. Lobo D, Feldman EB, Shah M et al (2014) Limbform: a functional ontology-based database of limb regeneration experiments. Bioinformatics 30:3598–3600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roy J, Cheung E, Bhatti J et al (2020) Curation and annotation of planarian gene expression patterns with segmented reference morphologies. Bioinformatics 36:2881–2887

    Article  CAS  PubMed  Google Scholar 

  22. Lobo D, Malone TJ, Levin M (2013) Planform: an application and database of graph-encoded planarian regenerative experiments. Bioinformatics 29:1098–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Emmons-Bell M, Durant F, Hammelman J et al (2015) Gap junctional blockade stochastically induces different species-specific head anatomies in genetically wild-type Girardia dorotocephala flatworms. Int J Mol Sci 16:27865–27896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Durant F, Lobo D, Hammelman J et al (2016) Physiological controls of large-scale patterning in planarian regeneration: a molecular and computational perspective on growth and form. Regeneration 3:78–102

    Article  PubMed  PubMed Central  Google Scholar 

  25. Weiner R, Schmitt BA, Podhaisky H (1997) ROWMAP--a ROW-code with Krylov techniques for large stiff ODEs. Appl Numer Math 25:303–319

    Article  Google Scholar 

  26. Szklarczyk D, Gable AL, Lyon D et al (2019) STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613

    Article  CAS  PubMed  Google Scholar 

  27. Lobo D, Beane WS, Levin M (2012) Modeling planarian regeneration: a primer for reverse-engineering the worm. PLoS Comput Biol 8:e1002481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Azuaje F (2011) Computational discrete models of tissue growth and regeneration. Brief Bioinform 12:64–77

    Article  PubMed  Google Scholar 

  29. Plikus MV, Baker RE, Chen CC et al (2011) Self-organizing and stochastic behaviors during the regeneration of hair stem cells. Science 332:586–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lobo D, Vico FJ, Dassow J (2011) Graph grammars with string-regulated rewriting. Theor Comput Sci 412:6101–6111

    Article  Google Scholar 

  31. García-Quismondo M, Levin M, Lobo D (2017) Modeling regenerative processes with membrane computing. Inf Sci (Ny) 381:229–249

    Article  Google Scholar 

  32. Eskandari M, Kuhl E (2015) Systems biology and mechanics of growth. Wiley Interdiscip Rev Syst Biol Med 7:401–412

    Article  PubMed  PubMed Central  Google Scholar 

  33. Marcon L, Sharpe J (2012) Turing patterns in development: what about the horse part? Curr Opin Genet Dev 22:578–584

    Article  CAS  PubMed  Google Scholar 

  34. Ko JM, Lobo D (2019) Continuous dynamic modeling of regulated cell adhesion: sorting, intercalation, and involution. Biophys J 117:2166–2179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Germann P, Marin-Riera M, Sharpe J (2019) Ya||a: GPU-powered spheroid models for mesenchyme and epithelium. Cell Syst 8:261–266.e3

    Article  CAS  PubMed  Google Scholar 

  36. Delile J, Herrmann M, Peyriéras N et al (2017) A cell-based computational model of early embryogenesis coupling mechanical behaviour and gene regulation. Nat Commun 8:13929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mirams GR, Arthurs CJ, Bernabeu MO et al (2013) Chaste: an open source C++ library for computational physiology and biology. PLoS Comput Biol 9:e1002970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Song Y, Yang S, Lei JZ (2018) ParaCells: a GPU architecture for cell-centered models in computational biology. IEEE/ACM Trans Comput Biol Bioinforma 5963:1–14

    Google Scholar 

  39. Ghaffarizadeh A, Heiland R, Friedman SH et al (2018) PhysiCell: an open source physics-based cell simulator for 3-D multicellular systems. PLoS Comput Biol 14:e1005991

    Article  PubMed  PubMed Central  Google Scholar 

  40. Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond Ser B Biol Sci 237:37–72

    Google Scholar 

  41. Krieg M, Arboleda-Estudillo Y, Puech PH et al (2008) Tensile forces govern germ-layer organization in zebrafish. Nat Cell Biol 10:429–436

    Article  CAS  PubMed  Google Scholar 

  42. Maître J-L, Heisenberg C-P (2013) Three functions of Cadherins in cell adhesion. Curr Biol 23:R626–R633

    Article  PubMed  PubMed Central  Google Scholar 

  43. Samanta D, Almo SC (2015) Nectin family of cell-adhesion molecules: structural and molecular aspects of function and specificity. Cell Mol Life Sci 72:645–658

    Article  CAS  PubMed  Google Scholar 

  44. Schier AF (2009) Nodal morphogens. Cold Spring Harb Perspect Biol 1:–a003459

    Google Scholar 

  45. Giger FA, David NB (2017) Endodermal germ-layer formation through active actin-driven migration triggered by N-cadherin. Proc Natl Acad Sci U S A 114:201708116

    Article  Google Scholar 

  46. Carvalho L, Heisenberg C-P (2010) The yolk syncytial layer in early zebrafish development. Trends Cell Biol 20:586–592

    Article  CAS  PubMed  Google Scholar 

  47. Rodaway A, Takeda H, Koshida S et al (1999) Induction of the mesendoderm in the zebrafish germ ring by yolk cell-derived TGF-beta family signals and discrimination of mesoderm and endoderm by FGF. Development 126:3067–3078

    Article  CAS  PubMed  Google Scholar 

  48. Montero J-A, Carvalho L, Wilsch-Bräuninger M et al (2005) Shield formation at the onset of zebrafish gastrulation. Development 132:1187–1198

    Article  CAS  PubMed  Google Scholar 

  49. Williams PH, Hagemann A, González-Gaitán M et al (2004) Visualizing long-range movement of the morphogen Xnr2 in the Xenopus embryo. Curr Biol 14:1916–1923

    Article  CAS  PubMed  Google Scholar 

  50. Stemmler MP, Koschorz B, Carney TJ et al (2009) The epithelial cell adhesion molecule EpCAM is required for epithelial morphogenesis and integrity during zebrafish epiboly and skin development. PLoS Genet 5:e1000563

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bruce AEE (2016) Zebrafish epiboly: spreading thin over the yolk. Dev Dyn 245:244–258

    Article  CAS  PubMed  Google Scholar 

  52. Lachnit M, Kur E, Driever W (2008) Alterations of the cytoskeleton in all three embryonic lineages contribute to the epiboly defect of Pou5f1/Oct4 deficient MZ spg zebrafish embryos. Dev Biol 315:1–17

    Article  CAS  PubMed  Google Scholar 

  53. Aster RC and Thurber CHCN-J or ABRRQ 8. . A (2012) Parameter estimation and inverse problems. Academic Press, Cambridge, Massachusetts

    Google Scholar 

  54. Reali F, Priami C, Marchetti L (2017) Optimization algorithms for computational systems biology. Front Appl Math Stat 3

    Google Scholar 

  55. Holland JH (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. Michigan Univ. Press, Ann Arbor, Michigan

    Google Scholar 

  56. Lobikin M, Lobo D, Blackiston DJ et al (2015) Serotonergic regulation of melanocyte conversion: a bioelectrically regulated network for stochastic all-or-none hyperpigmentation. Sci Signal 8:ra99

    Article  PubMed  Google Scholar 

  57. Lobo D, Fernández JD, and Vico FJ (2012) Behavior-finding: morphogenetic designs shaped by function, In: Doursat, R., Sayama, H., and Michel, O. (eds.) Morphogenetic engineering, pp. 441–472 Springer Berlin Heidelberg

    Google Scholar 

  58. Lobo D, Vico FJ (2010) Evolutionary development of tensegrity structures. Biosystems 101:167–176

    Article  PubMed  Google Scholar 

  59. Lobo D, Vico FJ (2010) Evolution of form and function in a model of differentiated multicellular organisms with gene regulatory networks. Biosystems 102:112–123

    Article  CAS  PubMed  Google Scholar 

  60. Henry A, Hemery M, François P (2018) φ-Evo: a program to evolve phenotypic models of biological networks. PLOS Comput Biol 14:e1006244

    Article  PubMed  PubMed Central  Google Scholar 

  61. Fortin FA, De Rainville FM, Gardner MA et al (2012) DEAP: evolutionary algorithms made easy. J Mach Learn Res 13:2171–2175

    Google Scholar 

  62. Mohammadi A, Asadi H, Mohamed S et al (2017) OpenGA, a C++ genetic algorithm library. In: 2017 IEEE international conference on systems, man, and cybernetics (SMC). IEEE, Piscataway, New Jersey, pp 2051–2056

    Chapter  Google Scholar 

  63. Budnikova M, Habig J, Lobo D et al (2014) Design of a flexible component gathering algorithm for converting cell-based models to graph representations for use in evolutionary search. BMC Bioinformatics 15:178

    Article  PubMed  PubMed Central  Google Scholar 

  64. Mousavi R, Konuru SH, Lobo D (2021) Inference of Dynamic Spatial GRN Models with Multi-GPU Evolutionary Computation. Brief Bioinform 22:bbab104

    Google Scholar 

  65. Walton KD, Whidden M, Kolterud A et al (2015) Villification in the mouse: bmp signals control intestinal villus patterning. Development:734–764

    Google Scholar 

  66. Lobo D, Hammelman J, Levin M (2016) MoCha: molecular characterization of unknown pathways. J Comput Biol 23:291–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lobo D, Morokuma J, Levin M (2016) Computational discovery and in vivo validation of hnf4 as a regulatory gene in planarian regeneration. Bioinformatics 32:2681–2685

    Article  CAS  PubMed  Google Scholar 

  68. Lobo D, Lobikin M, Levin M (2017) Discovering novel phenotypes with automatically inferred dynamic models: a partial melanocyte conversion in Xenopus. Sci Rep 7:41339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the members of the Lobo Lab for helpful discussions. This work was supported by the National Institute of General Medical Sciences of the National Institutes of Health under award number R35GM137953. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author Contributions: J. K. wrote Subheading 3.2. R. M. wrote Subheading 3.3. D. L. wrote Subheadings 1, 3.1, 3.4, and 3.5. All authors revised and approved the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Lobo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ko, J.M., Mousavi, R., Lobo, D. (2022). Computational Systems Biology of Morphogenesis. In: Cortassa, S., Aon, M.A. (eds) Computational Systems Biology in Medicine and Biotechnology. Methods in Molecular Biology, vol 2399. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1831-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1831-8_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1830-1

  • Online ISBN: 978-1-0716-1831-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics