Skip to main content

Computational Approaches and Tools as Applied to the Study of Rhythms and Chaos in Biology

  • Protocol
  • First Online:
Computational Systems Biology in Medicine and Biotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2399))

Abstract

The temporal dynamics in biological systems displays a wide range of behaviors, from periodic oscillations, as in rhythms, bursts, long-range (fractal) correlations, chaotic dynamics up to brown and white noise. Herein, we propose a comprehensive analytical strategy for identifying, representing, and analyzing biological time series, focusing on two strongly linked dynamics: periodic (oscillatory) rhythms and chaos. Understanding the underlying temporal dynamics of a system is of fundamental importance; however, it presents methodological challenges due to intrinsic characteristics, among them the presence of noise or trends, and distinct dynamics at different time scales given by molecular, dcellular, organ, and organism levels of organization. For example, in locomotion circadian and ultradian rhythms coexist with fractal dynamics at faster time scales. We propose and describe the use of a combined approach employing different analytical methodologies to synergize their strengths and mitigate their weaknesses. Specifically, we describe advantages and caveats to consider for applying probability distribution, autocorrelation analysis, phase space reconstruction, Lyapunov exponent estimation as well as different analyses such as harmonic, namely, power spectrum; continuous wavelet transforms; synchrosqueezing transform; and wavelet coherence. Computational harmonic analysis is proposed as an analytical framework for using different types of wavelet analyses. We show that when the correct wavelet analysis is applied, the complexity in the statistical properties, including temporal scales, present in time series of signals, can be unveiled and modeled. Our chapter showcase two specific examples where an in-depth analysis of rhythms and chaos is performed: (1) locomotor and food intake rhythms over a 42-day period of mice subjected to different feeding regimes; and (2) chaotic calcium dynamics in a computational model of mitochondrial function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lloyd D, Aon M, Cortassa S (2001) Why homeodynamics, not homeostasis? Sci World J 1:133–145. https://doi.org/10.1100/tsw.2001.20

    Article  CAS  Google Scholar 

  2. Hildebrandt G (1991) Reactive modifications of the autonomous time structure in the human organism. J Physiol Pharmacol 42(1):5–27

    CAS  PubMed  Google Scholar 

  3. Aon MA, Cortassa S (2012) Dynamic biological organization: fundamentals as applied to cellular systems. Springer Science & Business Media, Berlin

    Google Scholar 

  4. Edmunds LN (1988) Cellular and molecular bases of biological clocks: models and mechanisms for circadian timekeeping. Springer, New York, NY

    Google Scholar 

  5. Refinetti R (2011) Integration of biological clocks and rhythms. Comprehens Physiol 2(2):1213–1239

    Google Scholar 

  6. Devlin PF, Kay SA (2001) Circadian photoperception. Annu Rev Physiol 63(1):677–694

    CAS  PubMed  Google Scholar 

  7. Rosbash M, Young M (2009) The implications of multiple circadian clock origins. PLoS Biol 7(3):e1000062

    PubMed Central  Google Scholar 

  8. Refinetti R (1997) Homeostasis and circadian rhythmicity in the control of body temperature a. Ann N Y Acad Sci 813(1):63–70

    CAS  PubMed  Google Scholar 

  9. Chialvo DR (2010) Emergent complex neural dynamics. Nat Phys 6(10):744–750

    CAS  Google Scholar 

  10. Dunlap JC, Loros JJ, DeCoursey PJ (2004) Chronobiology: biological timekeeping. Sinauer Associates, Sunderland, MA

    Google Scholar 

  11. Golombek DA, Rosenstein RE (2010) Physiology of circadian entrainment. Physiol Rev 90(3):1063–1102

    CAS  PubMed  Google Scholar 

  12. Schwartz WJ, Daan S (2017) Origins: a brief account of the ancestry of circadian biology. In: Biological timekeeping: clocks, rhythms and behaviour. Springer, New York, NY, pp 3–22

    Google Scholar 

  13. Goldbeter A et al (1997) Biochemical oscillations and cellular rhythms. Cambridge University Press, Cambridge

    Google Scholar 

  14. Goodwin C (1965) Oscillatory behavior in enzymatic control processes. Adv Enzym Regul 3:425–437

    CAS  Google Scholar 

  15. Griffith JS (1968) Mathematics of cellular control processes i. negative feedback to one gene. J Theor Biol 20(2):202–208

    CAS  PubMed  Google Scholar 

  16. Griffith JS (1968) Mathematics of cellular control processes ii. positive feedback to one gene. J Theor Biol 20(2):209–216

    CAS  PubMed  Google Scholar 

  17. Winfree T (1970) Integrated view of resetting a circadian clock. J Theor Biol 28(3):327–374

    CAS  PubMed  Google Scholar 

  18. King DP, Zhao Y, Sangoram AM, Wilsbacher LD, Tanaka M, Antoch MP, Steeves TD, Vitaterna MH, Kornhauser JM, Lowrey PL et al (1997) Positional cloning of the mouse circadian clock gene. Cell 89(4):641–653

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Konopka RJ, Smith RF, Orr D (1991) Characterization of andante, a new drosophila clock mutant, and its interactions with other clock mutants. J Neurogenet 7(2–3):103–114

    CAS  PubMed  Google Scholar 

  20. Vitaterna MH, King DP, Chang A-M, Kornhauser JM, Lowrey PL, McDonald JD, Dove WF, Pinto LH, Turek FW, Takahashi JS (1994) Mutagenesis and mapping of a mouse gene, clock, essential for circadian behavior. Science 264(5159):719–725

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zwiebel LJ, Hardin PE, Hall JC, Rosbash M (1991) Circadian oscillations in protein and mrna levels of the period gene of drosophila melanogaster. Biochem Soc Trans 19(2):533–537

    CAS  PubMed  Google Scholar 

  22. Dunlap JC (1999) Molecular bases for circadian clocks. Cell 96(2):271–290

    CAS  PubMed  Google Scholar 

  23. Dunlap JC, Loros JJ (2017) Making time: conservation of biological clocks from fungi to animals. Microbiol Spectr 5(3):5–3

    Google Scholar 

  24. Takahashi JS (2017) Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 18(3):164–179

    CAS  PubMed  Google Scholar 

  25. Ananthasubramaniam B, Herzel H (2014) Positive feedback promotes oscillations in negative feedback loops. PLoS One 9(8):e104761

    PubMed  PubMed Central  Google Scholar 

  26. Forger DB, Peskin CS (2005) Stochastic simulation of the mammalian circadian clock. Proc Natl Acad Sci 102(2):321–324

    CAS  PubMed  Google Scholar 

  27. Goldbeter A (1995) A model for circadian oscillations in the drosophila period protein (per). Proc R Soc Lond Ser B Biol Sci 261(1362):319–324

    CAS  Google Scholar 

  28. Nieto PS, Condat C (2019) Translational thresholds in a core circadian clock model. Phys Rev E 100(2):022409

    CAS  PubMed  Google Scholar 

  29. Risau-Gusman S, Gleiser PM (2014) A mathematical model of communication between groups of circadian neurons in drosophila melanogaster. J Biol Rhythm 29(6):401–410

    Google Scholar 

  30. Guzmán DA, Flesia AG, Aon MA, Pellegrini S, Marin RH, Kembro JM (2017) The fractal organization of ultradian rhythms in avian behavior. Sci Rep 7(1):1–13

    Google Scholar 

  31. Rijo-Ferreira F, Takahashi JS (2019) Genomics of circadian rhythms in health and disease. Genome Med 11(1):1–16

    Google Scholar 

  32. Herzog ED, Hermanstyne T, Smyllie NJ, Hastings MH (2017) Regulating the suprachiasmatic nucleus (scn) circadian clockwork: interplay between cell-autonomous and circuit-level mechanisms. Cold Spring Harb Perspect Biol 9(1):a027706

    PubMed  PubMed Central  Google Scholar 

  33. Mohawk JA, Takahashi JS (2011) Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators. Trends Neurosci 34(7):349–358

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Pilorz V, Astiz M, Heinen KO, Rawashdeh O, Oster H (2020) The concept of coupling in the mammalian circadian clock network. J Mol Biol 432(12):3618–3638

    CAS  PubMed  Google Scholar 

  35. Dowse HB (2009) Analyses for physiological and behavioral rhythmicity. Methods Enzymol 454:141–174

    CAS  PubMed  Google Scholar 

  36. Liu C, Weaver DR, Strogatz SH, Reppert SM (1997) Cellular construction of a circadian clock: period determination in the suprachiasmatic nuclei. Cell 91(6):855–860

    CAS  PubMed  Google Scholar 

  37. Wang S, Herzog ED, Kiss IZ, Schwartz WJ, Bloch G, Sebek M, Granados-Fuentes D, Wang L, Li J-S (2018) Inferring dynamic topology for decoding spatiotemporal structures in complex heterogeneous networks. Proc Natl Acad Sci 115(37):9300–9305

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Izumo M, Pejchal M, Schook AC, Lange RP, Walisser JA, Sato TR, Wang X, Bradfield CA, Takahashi JS (2014) Differential effects of light and feeding on circadian organization of peripheral clocks in a forebrain bmal1 mutant. elife 3:e04617

    PubMed Central  Google Scholar 

  39. Yoo S-H, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong H-K, Oh WJ, Yoo OJ et al (2004) Period2:: Luciferase real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci 101(15):5339–5346

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Forger DB (2017) Biological clocks, rhythms, and oscillations: the theory of biological timekeeping. The MIT Press, Cambridge, MA

    Google Scholar 

  41. Hu K, Scheer FA, Ivanov PC, Buijs RM, Shea SA (2007) The suprachiasmatic nucleus functions beyond circadian rhythm generation. Neuroscience 149(3):508–517

    CAS  PubMed  Google Scholar 

  42. Hu K, Ivanov PC, Chen Z, Hilton MF, Stanley HE, Shea SA (2004) Non-random fluctuations and multi-scale dynamics regulation of human activity. Phys A Stat Mech Its Appl 337(1–2):307–318

    Google Scholar 

  43. Goldberger L, Amaral LA, Hausdorff JM, Ivanov PC, Peng C-K, Stanley HE (2002) Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci 99(Suppl 1):2466–2472

    PubMed  PubMed Central  Google Scholar 

  44. Pittman-Polletta R, Scheer FA, Butler MP, Shea SA, Hu K (2013) The role of the circadian system in fractal neurophysiological control. Biol Rev 88(4):873–894

    PubMed  Google Scholar 

  45. Hu K, Meijer JH, Shea SA, VanderLeest HT, Pittman-Polletta B, Houben T, van Oosterhout F, Deboer T, Scheer FA (2012) Fractal patterns of neural activity exist within the suprachiasmatic nucleus and require extrinsic network interactions. PLoS One 7(11):e48927

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu Y-E, Enoki R, Oda Y, Huang Z-L, Honma K-i, Honma S (2018) Ultradian calcium rhythms in the paraventricular nucleus and subparaventricular zone in the hypothalamus. Proc Natl Acad Sci 115(40):E9469–E9478

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Carafoli E, Krebs J (2016) Why calcium? how calcium became the best communicator. J Biol Chem 291(40):20849–20857

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Niggli E, Shirokova N (2007) A guide to sparkology: the taxonomy of elementary cellular ca2+ signaling events. Cell Calcium 42(4–5):379–387

    CAS  PubMed  Google Scholar 

  49. Berridge MJ, Cobbold P, Cuthbertson K (1988) Spatial and temporal aspects of cell signalling. Phil Trans R Soc Lond B Biol Sci 320(1199):325–343

    CAS  Google Scholar 

  50. Berridge M (1990) Calcium oscillations. J Biol Chem 265(17):9583–9586

    CAS  PubMed  Google Scholar 

  51. Sneyd J, Han JM, Wang L, Chen J, Yang X, Tanimura A, Sanderson MJ, Kirk V, Yule DI (2017) On the dynamical structure of calcium oscillations. Proc Natl Acad Sci 114(7):1456–1461

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Voorsluijs V, Dawson SP, De Decker Y, Dupont G (2019) Deterministic limit of intracellular calcium spikes. Phys Rev Lett 122(8):088101

    CAS  PubMed  Google Scholar 

  53. Dupont G (2014) Modeling the intracellular organization of calcium signaling. Wiley Interdiscip Rev Syst Biol Med 6(3):227–237

    CAS  PubMed  Google Scholar 

  54. Gilkey JC, Jaffe LF, Ridgway EB, Reynolds GT (1978) A free calcium wave traverses the activating egg of the medaka, Oryzias latipes. J Cell Biol 76(2):448–466

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wakai T, Mehregan A, Fissore RA (2019) Ca2+ signaling and homeostasis in mammalian oocytes and eggs. Cold Spring Harb Perspect Biol 11(12):a035162

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kembro JM, Cortassa S, Lloyd D, Sollott SJ, Aon MA (2018) Mitochondrial chaotic dynamics: redox-energetic behavior at the edge of stability. Sci Rep 8(1):1–11

    CAS  Google Scholar 

  57. Akar FG, Aon MA, Tomaselli GF, O’Rourke B et al (2005) The mitochondrial origin of postischemic arrhythmias. J Clin Invest 115(12):3527–3535

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Aggarwal NT, Makielski JC (2013) Redox control of cardiac excitability. Antioxid Redox Signal 18(4):432–468

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Aon MA, Cortassa S, Akar F, Brown D, Zhou L, O’rourke B (2009) From mitochondrial dynamics to arrhythmias. Int J Biochem Cell Biol 41(10):1940–1948

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Refinetti R, Cornélissen G, Halberg F (2007) Procedures for numerical analysis of circadian rhythms. Biol Rhythm Res 38(4):275–325

    PubMed  PubMed Central  Google Scholar 

  61. Bloomfield P (2004) Fourier analysis of time series: an introduction. John Wiley & Sons, New York, NY

    Google Scholar 

  62. Mourão M, Satin L, Schnell S (2014) Optimal experimental design to estimate statistically significant periods of oscillations in time course data. PLoS One 9(4):e93826

    PubMed  PubMed Central  Google Scholar 

  63. Refinetti R (1993) Laboratory instrumentation and computing: comparison of six methods for the determination of the period of circadian rhythms. Physiol Behav 54(5):869–875

    CAS  PubMed  Google Scholar 

  64. Glynn EF, Chen J, Mushegian AR (2006) Detecting periodic patterns in unevenly spaced gene expression time series using lomb–scargle periodograms. Bioinformatics 22(3):310–316

    CAS  PubMed  Google Scholar 

  65. Deckard A, Anafi RC, Hogenesch JB, Haase SB, Harer J (2013) Design and analysis of large-scale biological rhythm studies: a comparison of algorithms for detecting periodic signals in biological data. Bioinformatics 29(24):3174–3180

    CAS  PubMed  PubMed Central  Google Scholar 

  66. De Lichtenberg U, Jensen LJ, Fausbøll A, Jensen TS, Bork P, Brunak S (2005) Comparison of computational methods for the identification of cell cycle-regulated genes. Bioinformatics 21(7):1164–1171

    PubMed  Google Scholar 

  67. Hughes ME, Hogenesch JB, Kornacker K (2010) Jtk cycle: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets. J Biol Rhythm 25(5):372–380

    Google Scholar 

  68. Rosenstein MT, Collins JJ, De Luca CJ (1993) A practical method for calculating largest lyapunov exponents from small data sets. Phys D Nonlin Phenom 65(1–2):117–134

    Google Scholar 

  69. Orlando DA, Lin CY, Bernard A, Wang JY, Socolar JE, Iversen ES, Hartemink AJ, Haase SB (2008) Global control of cell-cycle transcription by coupled cdk and network oscillators. Nature 453(7197):944–947

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Scargle JD (1982) Studies in astronomical time series analysis. II-statistical aspects of spectral analysis of unevenly spaced data. Astrophys J 263:835–853

    Google Scholar 

  71. Cohen-Steiner D, Edelsbrunner H, Harer J, Mileyko Y (2010) Lipschitz functions have l p-stable persistence. Found Comput Math 10(2):127–139

    Google Scholar 

  72. Kantz H, Schreiber T (2004) Nonlinear time series analysis, vol 7. Cambridge University Press, Cambridge

    Google Scholar 

  73. Kembro JM, Aon MA, Winslow RL, O’Rourke B, Cortassa S (2013) Integrating mitochondrial energetics, redox and ros metabolic networks: a two-compartment model. Biophys J 104(2):332–343

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kembro JM, Cortassa S, Aon MA (2014) Complex oscillatory redox dynamics with signaling potential at the edge between normal and pathological mitochondrial function. Front Physiol 5:257

    PubMed  PubMed Central  Google Scholar 

  75. Komendantov O, Kononenko NI (1996) Deterministic chaos in mathematical model of pacemaker activity in bursting neurons of snail, helix pomatia. J Theor Biol 183(2):219–230

    CAS  PubMed  Google Scholar 

  76. Refinetti R (2004) Non-stationary time series and the robustness of circadian rhythms. J Theor Biol 227(4):571–581

    PubMed  Google Scholar 

  77. Leise TL, Harrington ME (2011) Wavelet-based time series analysis of circadian rhythms. J Biol Rhythm 26(5):454–463

    Google Scholar 

  78. Leise TL, Indic P, Paul MJ, Schwartz WJ (2013) Wavelet meets actogram. J Biol Rhythm 28(1):62–68

    Google Scholar 

  79. Leise TL (2015) Wavelet-based analysis of circadian behavioral rhythms. Methods Enzymol 551:95–119

    CAS  PubMed  Google Scholar 

  80. Leise TL (2013) Wavelet analysis of circadian and ultradian behavioral rhythms. J Circadian Rhythms 11(1):1–9

    Google Scholar 

  81. Flandrin P (2018) Explorations in time-frequency analysis. Cambridge University Press, Cambridge

    Google Scholar 

  82. Mallat S (2011) A wavelet tour of signal processing: the sparse way, 3rd edn. Academic Press, Burlington, MA

    Google Scholar 

  83. Addison PS, Walker J, Guido RC (2009) Time–frequency analysis of biosignals. IEEE Eng Med Biol Mag 28(5):14–29

    PubMed  Google Scholar 

  84. Dong S, Yuan M, Wang Q, Liang Z (2018) A modified empirical wavelet transform for acoustic emission signal decomposition in structural health monitoring. Sensors 18(5):1645

    PubMed Central  Google Scholar 

  85. Jud C, Schmutz I, Hampp G, Oster H, Albrecht U (2005) A guideline for analyzing circadian wheel-running behavior in rodents under different lighting conditions. Biol Proced Online 7(1):101–116

    PubMed  PubMed Central  Google Scholar 

  86. Williams G (1997) Chaos theory tamed. Joseph Henry Press, Washington, DC

    Google Scholar 

  87. Clocklab (2020) Clocklab: data collection and analysis for circadian biology. Clocklab, Wilmette, IL

    Google Scholar 

  88. Kembro JM, Flesia AG, Gleiser RM, Perillo MA, Marin RH (2013) Assessment of long-range correlation in animal behavior time series: the temporal pattern of locomotor activity of Japanese quail (coturnix coturnix) and mosquito larva (Culex quinquefasciatus). Phys A Stat Mech Its Appl 392(24):6400–6413

    Google Scholar 

  89. Hu K, Ivanov PC, Hilton MF, Chen Z, Ayers RT, Stanley HE, Shea SA (2004) Endogenous circadian rhythm in an index of cardiac vulnerability independent of changes in behavior. Proc Natl Acad Sci 101(52):18223–18227

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Koks D (2006) Explorations in mathematical physics: the concepts behind an elegant language. Springer, New York, NY

    Google Scholar 

  91. Rhee NH, Góra P, Bani-Yaghoub M (2019) Predicting and estimating probability density functions of chaotic systems. Discr Contin Dyn Syst B 24(1):297

    Google Scholar 

  92. Clauset A, Shalizi CR, Newman ME (2009) Power-law distributions in empirical data. SIAM Rev 51(4):661–703

    Google Scholar 

  93. Kembro JM, Lihoreau M, Garriga J, Raposo EP, Bartumeus F (2019) Bumblebees learn foraging routes through exploitation–exploration cycles. J R Soc Interface 16(156):20190103

    PubMed  PubMed Central  Google Scholar 

  94. Bartumeus F, Giuggioli L, Louzao M, Bretagnolle V, Oro D, Levin SA (2010) Fishery discards impact on seabird movement patterns at regional scales. Curr Biol 20(3):215–222

    CAS  PubMed  Google Scholar 

  95. Maraun D, Rust H, Timmer J (2004) Tempting long-memory-on the interpretation of DFA results. Nonlinear Process Geophys 11(4):495–503

    Google Scholar 

  96. Aon M, Cortassa S (2009) Chaotic dynamics, noise and fractal space in biochemistry. In: Encyclopedia of complexity and systems science. Springer, New York, NY, pp 476–489

    Google Scholar 

  97. Peng C-K, Havlin S, Stanley HE, Goldberger AL (1995) Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5(1):82–87

    CAS  PubMed  Google Scholar 

  98. Aon MA, Cortassa S, Lloyd D (2012) Chaos in biochemistry and physiology. In: Encyclopaedia of biochemistry and molecular medicine: systems biology. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 239–276

    Google Scholar 

  99. Szendro P, Vincze G, Szasz A (2001) Pink-noise behaviour of biosystems. Eur Biophys J 30(3):227–231

    CAS  PubMed  Google Scholar 

  100. Lomb NR (1976) Least-squares frequency analysis of unequally spaced data. Astrophys Space Sci 39(2):447–462

    Google Scholar 

  101. Poincaré H (1908) Science and method

    Google Scholar 

  102. Girling A (1995) Periodograms and spectral estimates for rhythm data. Biol Rhythm Res 26(2):149–172

    Google Scholar 

  103. Abarbanel HD, Gollub JP (1996) Analysis of observed chaotic data. Phys Today 49(11):86

    Google Scholar 

  104. Shaw R (1981) Strange attractors, chaotic behavior, and information flow. Z Naturforsch A 36(1):80–112

    Google Scholar 

  105. Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining lyapunov exponents from a time series. Phys D Nonlin Phenom 16(3):285–317

    Google Scholar 

  106. Bartnik E, Blinowska KJ, Durka PJ (1992) Single evoked potential reconstruction by means of wavelet transform. Biol Cybern 67(2):175–181

    CAS  PubMed  Google Scholar 

  107. Baggs JE, Price TS, DiTacchio L, Panda S, FitzGerald GA, Hogenesch JB (2009) Network features of the mammalian circadian clock. PLoS Biol 7(3):e1000052

    PubMed Central  Google Scholar 

  108. Meeker K, Harang R, Webb AB, Welsh DK, Doyle FJ III, Bonnet G, Herzog ED, Petzold LR (2011) Wavelet measurement suggests cause of period instability in mammalian circadian neurons. J Biol Rhythm 26(4):353–362

    Google Scholar 

  109. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1):61–78

    Google Scholar 

  110. Abid A, Gdeisat M, Burton D, Lalor M (2007) Ridge extraction algorithms for one-dimensional continuous wavelet transform: a comparison. J Phys Conf Ser 76:012045

    Google Scholar 

  111. Carmona RA, Hwang WL, Torrésani B (1999) Multiridge detection and time-frequency reconstruction. IEEE Trans Signal Process 47(2):480–492

    Google Scholar 

  112. Lorenz EN (1995) The essence of chaos. Taylor & Francis, UK, p 227

    Google Scholar 

  113. Carmona RA, Hwang WL, Torrésani B (1997) Characterization of signals by the ridges of their wavelet transforms. IEEE Trans Signal Process 45(10):2586–2590

    Google Scholar 

  114. Fossion R, Rivera AL, Toledo-Roy JC, Angelova M, El-Esawi M (2018) Quantification of irregular rhythms in chrono-biology: a time-series perspective. In: Circadian rhythm: cellular and molecular mechanisms. InTech, Rijeka, pp 33–58

    Google Scholar 

  115. Fossion R, Rivera AL, Toledo-Roy JC, Ellis J, Angelova M (2017) Multiscale adaptive analysis of circadian rhythms and intradaily variability: application to actigraphy time series in acute insomnia subjects. PLoS One 12(7):e0181762

    PubMed  PubMed Central  Google Scholar 

  116. Herrera RH, Han J, van der Baan M (2014) Applications of the synchrosqueezing transform in seismic time-frequency analysis. Geophysics 79(3):V55–V64

    Google Scholar 

  117. Kumar CS, Arumugam V, Sengottuvelusamy R, Srinivasan S, Dhakal H (2017) Failure strength prediction of glass/epoxy composite laminates from acoustic emission parameters using artificial neural network. Appl Acoust 115:32–41

    Google Scholar 

  118. Daubechies I, Lu J, Wu H-T (2011) Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool. Appl Comput Harmon Anal 30(2):243–261

    Google Scholar 

  119. Auger F, Flandrin P (1995) Improving the readability of time-frequency and time-scale representations by the reassignment method. IEEE Trans Signal Process 43(5):1068–1089

    Google Scholar 

  120. Auger F, Flandrin P, Lin Y-T, McLaughlin S, Meignen S, Oberlin T, Wu H-T (2013) Time-frequency reassignment and synchrosqueezing: an overview. IEEE Signal Process Mag 30(6):32–41

    Google Scholar 

  121. Thakur G, Brevdo E, Fuˇckar NS, Wu H-T (2013) The synchrosqueezing algorithm for time-varying spectral analysis: robustness properties and new paleoclimate applications. Signal Process 93(5):1079–1094

    Google Scholar 

  122. Chavez M, Cazelles B (2019) Detecting dynamic spatial correlation patterns with generalized wavelet coherence and non-stationary surrogate data. Sci Rep 9(1):1–9

    CAS  Google Scholar 

  123. Cazelles B, Chavez M, Berteaux D, Ménard F, Vik JO, Jenouvrier S, Stenseth NC (2008) Wavelet analysis of ecological time series. Oecologia 156(2):287–304

    PubMed  Google Scholar 

  124. Staff PO (2017) Correction: multiscale adaptive analysis of circadian rhythms and intradaily variability: application to actigraphy time series in acute insomnia subjects. PLoS One 12(11):e0188674

    Google Scholar 

  125. Le Van Quyen M, Foucher J, Lachaux J-P, Rodriguez E, Lutz A, Martinerie J, Varela FJ (2001) Comparison of hilbert transform and wavelet methods for the analysis of neuronal synchrony. J Neurosci Methods 111(2):83–98

    Google Scholar 

  126. Cazelles B, Stone L (2003) Detection of imperfect population synchrony in an uncertain world. J Anim Ecol 72:953–968

    Google Scholar 

  127. Acosta-Rodríguez VA, de Groot MH, Rijo-Ferreira F, Green CB, Takahashi JS (2017) Mice under caloric restriction self-impose a temporal restriction of food intake as revealed by an automated feeder system. Cell Metab 26(1):267–277

    PubMed  PubMed Central  Google Scholar 

  128. Wu G, Zhu J, Yu J, Zhou L, Huang JZ, Zhang Z (2014) Evaluation of five methods for genome-wide circadian gene identification. J Biol Rhythm 29(4):231–242

    Google Scholar 

  129. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen N-C, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond Ser A Math Phys Eng Sci 454(1971):903–995

    Google Scholar 

  130. Rehman N, Mandic DP (2010) Multivariate empirical mode decomposition. Proc R Soc A Math Phys Eng Sci 466(2117):1291–1302

    Google Scholar 

  131. Rilling G, Flandrin P (2007) One or two frequencies? the empirical mode decomposition answers. IEEE Trans Signal Process 56(1):85–95

    Google Scholar 

  132. Gilles J (2013) Empirical wavelet transform. IEEE Trans Signal Process 61(16):3999–4010

    Google Scholar 

  133. Liu W, Chen W (2019) Recent advancements in empirical wavelet transform and its applications. IEEE Access 7:103770–103780

    Google Scholar 

  134. Wu G, Anafi RC, Hughes ME, Kornacker K, Hogenesch JB (2016) Metacycle: an integrated r package to evaluate periodicity in large scale data. Bioinformatics 32(21):3351–3353

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Kennel MB, Brown R, Abarbanel HD (1992) Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys Rev A 45(6):3403

    CAS  PubMed  Google Scholar 

  136. Kurz FT, Kembro JM, Flesia AG, Armoundas AA, Cortassa S, Aon MA, Lloyd D (2017) Network dynamics: quantitative analysis of complex behavior in metabolism, organelles, and cells, from experiments to models and back. Wiley Interdiscip Rev Syst Biol Med 9(1):e1352

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jackelyn Melissa Kembro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Flesia, A.G., Nieto, P.S., Aon, M.A., Kembro, J.M. (2022). Computational Approaches and Tools as Applied to the Study of Rhythms and Chaos in Biology. In: Cortassa, S., Aon, M.A. (eds) Computational Systems Biology in Medicine and Biotechnology. Methods in Molecular Biology, vol 2399. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1831-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1831-8_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1830-1

  • Online ISBN: 978-1-0716-1831-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics