Skip to main content

Resurrecting Enzymes by Ancestral Sequence Reconstruction

  • Protocol
  • First Online:
Enzyme Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2397))

Abstract

Ancestral Sequence Reconstruction (ASR) allows one to infer the sequences of extinct proteins using the phylogeny of extant proteins. It consists of disclosing the evolutionary history—i.e., the phylogeny—of a protein family of interest and then inferring the sequences of its ancestors—i.e., the nodes in the phylogeny. Assisted by gene synthesis, the selected ancestors can be resurrected in the lab and experimentally characterized. The crucial step to succeed with ASR is starting from a reliable phylogeny. At the same time, it is of the utmost importance to have a clear idea on the evolutionary history of the family under study and the events that influenced it. This allows us to implement ASR with well-defined hypotheses and to apply the appropriate experimental methods. In the last years, ASR has become popular to test hypotheses about the origin of functionalities, changes in activities, understanding physicochemical properties of proteins, among others. In this context, the aim of this chapter is to present the ASR approach applied to the reconstruction of enzymes—i.e., proteins with catalytic roles. The spirit of this contribution is to provide a basic, hands-to-work guide for biochemists and biologists who are unfamiliar with molecular phylogenetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fersht A (1999) Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding. Macmillan, Basingstoke

    Google Scholar 

  2. Gerlt JA, Babbitt PC (2009) Enzyme (re)design: lessons from natural evolution and computation. Curr Opin Chem Biol 13(1):10–18. https://doi.org/10.1016/j.cbpa.2009.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Harms MJ, Thornton JW (2013) Evolutionary biochemistry: revealing the historical and physical causes of protein properties. Nat Rev Genet 14(8):559–571. https://doi.org/10.1038/nrg3540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yang G, Miton CM, Tokuriki N (2020) A mechanistic view of enzyme evolution. Protein Sci 29(8):1724–1747. https://doi.org/10.1002/pro.3901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kaltenbach M, Tokuriki N (2014) Dynamics and constraints of enzyme evolution. J Exp Zool B Mol Dev Evol 322(7):468–487. https://doi.org/10.1002/jez.b.22562

    Article  CAS  PubMed  Google Scholar 

  6. Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R, Spatafora JW, Yadav JS, Aerts A, Benoit I, Boyd A, Carlson A, Copeland A, Coutinho PM, de Vries RP, Ferreira P, Findley K, Foster B, Gaskell J, Glotzer D, Górecki P, Heitman J, Hesse C, Hori C, Igarashi K, Jurgens JA, Kallen N, Kersten P, Kohler A, Kües U, Kumar TKA, Kuo A, LaButti K, Larrondo LF, Lindquist E, Ling A, Lombard V, Lucas S, Lundell T, Martin R, McLaughlin DJ, Morgenstern I, Morin E, Murat C, Nagy LG, Nolan M, Ohm RA, Patyshakuliyeva A, Rokas A, Ruiz-Dueñas FJ, Sabat G, Salamov A, Samejima M, Schmutz J, Slot JC, St. John F, Stenlid J, Sun H, Sun S, Syed K, Tsang A, Wiebenga A, Young D, Pisabarro A, Eastwood DC, Martin F, Cullen D, Grigoriev IV, Hibbett DS (2012) The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336(6089):1715. https://doi.org/10.1126/science.1221748

    Article  CAS  PubMed  Google Scholar 

  7. Pauling L Chemical paleogenetics. Acta chem scand 17:S9–S16

    Google Scholar 

  8. Gaucher EA (2007) Ancestral sequence reconstruction as a tool to understand natural history and guide synthetic biology: realizing and extending the vision of Zuckerkandl and Pauling. Liberles 83:20–33

    Google Scholar 

  9. Hochberg GKA, Thornton JW (2017) Reconstructing ancient proteins to understand the causes of structure and function. Annu Rev Biophys 46(1):247–269. https://doi.org/10.1146/annurev-biophys-070816-033631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Garcia AK, Kaçar B (2019) How to resurrect ancestral proteins as proxies for ancient biogeochemistry. Free Radic Biol Med 140:260–269. https://doi.org/10.1016/j.freeradbiomed.2019.03.033

    Article  CAS  PubMed  Google Scholar 

  11. Voordeckers K, Brown CA, Vanneste K, van der Zande E, Voet A, Maere S, Verstrepen KJ (2012) Reconstruction of ancestral metabolic enzymes reveals molecular mechanisms underlying evolutionary innovation through gene duplication. PLoS Biol 10(12):e1001446. https://doi.org/10.1371/journal.pbio.1001446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Clifton BE, Kaczmarski JA, Carr PD, Gerth ML, Tokuriki N, Jackson CJ (2018) Evolution of cyclohexadienyl dehydratase from an ancestral solute-binding protein. Nat Chem Biol 14(6):542–547. https://doi.org/10.1038/s41589-018-0043-2

    Article  CAS  PubMed  Google Scholar 

  13. Nicoll CR, Bailleul G, Fiorentini F, Mascotti ML, Fraaije MW, Mattevi A (2020) Ancestral-sequence reconstruction unveils the structural basis of function in mammalian FMOs. Nat Struct Mol Biol 27(1):14–24. https://doi.org/10.1038/s41594-019-0347-2

    Article  CAS  PubMed  Google Scholar 

  14. Cortés Cabrera Á, Sánchez-Murcia PA, Gago F (2017) Making sense of the past: hyperstability of ancestral thioredoxins explained by free energy simulations. Phys Chem Chem Phys 19(34):23239–23246. https://doi.org/10.1039/C7CP03659K

    Article  PubMed  Google Scholar 

  15. Risso VA, Gavira JA, Mejia-Carmona DF, Gaucher EA, Sanchez-Ruiz JM (2013) Hyperstability and substrate promiscuity in laboratory resurrections of Precambrian β-lactamases. J Am Chem Soc 135(8):2899–2902. https://doi.org/10.1021/ja311630a

    Article  CAS  PubMed  Google Scholar 

  16. Semba Y, Ishida M, S-i Y, Yamagishi A (2015) Ancestral amino acid substitution improves the thermal stability of recombinant lignin-peroxidase from white-rot fungi, Phanerochaete chrysosporium strain UAMH 3641. Protein Eng Des Sel 28(7):221–230. https://doi.org/10.1093/protein/gzv023

    Article  CAS  PubMed  Google Scholar 

  17. Wheeler LC, Lim SA, Marqusee S, Harms MJ (2016) The thermostability and specificity of ancient proteins. Curr Opin Struct Biol 38:37–43. https://doi.org/10.1016/j.sbi.2016.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Thornton JW (2004) Resurrecting ancient genes: experimental analysis of extinct molecules. Nat Rev Genet 5(5):366–375. https://doi.org/10.1038/nrg1324

    Article  CAS  PubMed  Google Scholar 

  19. Hanson-Smith V, Johnson A (2016) PhyloBot: a web portal for automated Phylogenetics, ancestral sequence reconstruction, and exploration of mutational trajectories. PLoS Comput Biol 12(7):e1004976. https://doi.org/10.1371/journal.pcbi.1004976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Harms MJ, Thornton JW (2010) Analyzing protein structure and function using ancestral gene reconstruction. Curr Opin Struct Biol 20(3):360–366. https://doi.org/10.1016/j.sbi.2010.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kaltenbach M, Burke JR, Dindo M, Pabis A, Munsberg FS, Rabin A, Kamerlin SCL, Noel JP, Tawfik DS (2018) Evolution of chalcone isomerase from a noncatalytic ancestor. Nat Chem Biol 14(6):548–555. https://doi.org/10.1038/s41589-018-0042-3

    Article  CAS  PubMed  Google Scholar 

  22. Busch F, Rajendran C, Heyn K, Schlee S, Merkl R, Sterner R (2016) Ancestral tryptophan synthase reveals functional sophistication of primordial enzyme complexes. Cell Chem Biol 23(6):709–715. https://doi.org/10.1016/j.chembiol.2016.05.009

    Article  CAS  PubMed  Google Scholar 

  23. Pillai AS, Chandler SA, Liu Y, Signore AV, Cortez-Romero CR, Benesch JLP, Laganowsky A, Storz JF, Hochberg GKA, Thornton JW (2020) Origin of complexity in haemoglobin evolution. Nature 581(7809):480–485. https://doi.org/10.1038/s41586-020-2292-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lim SA, Bolin ER, Marqusee S (2018) Tracing a protein’s folding pathway over evolutionary time using ancestral sequence reconstruction and hydrogen exchange. eLife 7:e38369. https://doi.org/10.7554/eLife.38369

    Article  PubMed  PubMed Central  Google Scholar 

  25. Finnigan GC, Hanson-Smith V, Stevens TH, Thornton JW (2012) Evolution of increased complexity in a molecular machine. Nature 481(7381):360–364. https://doi.org/10.1038/nature10724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mitchell JBO (2017) Enzyme function and its evolution. Curr Opin Struct Biol 47:151–156. https://doi.org/10.1016/j.sbi.2017.10.004

    Article  CAS  PubMed  Google Scholar 

  27. Pearson WR (2014) BLAST and FASTA similarity searching for multiple sequence alignment. Methods Mol Biol 1079:75–101. https://doi.org/10.1007/978-1-62703-646-7_5

    Article  PubMed  Google Scholar 

  28. Fitch WM (1970) Distinguishing homologous from analogous proteins. Syst Zool 19(2):99–113

    Article  CAS  PubMed  Google Scholar 

  29. Koonin EV (2005) Orthologs, paralogs, and evolutionary genomics. Annu Rev Genet 39(1):309–338. https://doi.org/10.1146/annurev.genet.39.073003.114725

    Article  CAS  PubMed  Google Scholar 

  30. Heath TA, Hedtke SM, Hillis DM (2008) Taxon sampling and the accuracy of phylogenetic analyses. J Syst Evol 46(3):239–257

    Google Scholar 

  31. Hillis DM (1996) Inferring complex phytogenies. Nature 383(6596):130–131. https://doi.org/10.1038/383130a0

    Article  CAS  PubMed  Google Scholar 

  32. Kumar S, Stecher G, Suleski M, Hedges SB (2017) TimeTree: a resource for timelines, Timetrees, and divergence times. Mol Biol Evol 34(7):1812–1819. https://doi.org/10.1093/molbev/msx116

    Article  CAS  PubMed  Google Scholar 

  33. Schoch C (2011) NCBI Taxonomy. National Center for Biotechnology Information (US). https://www.ncbi.nlm.nih.gov/books/NBK53758/

  34. Carrillo H, Lipman D (1988) The multiple sequence alignment problem in biology. SIAM J Appl Math 48(5):1073–1082. https://doi.org/10.1137/0148063

    Article  Google Scholar 

  35. Vialle RA, Tamuri AU, Goldman N (2018) Alignment modulates ancestral sequence reconstruction accuracy. Mol Biol Evol 35(7):1783–1797. https://doi.org/10.1093/molbev/msy055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Katoh K, Rozewicki J, Yamada KD (2017) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20(4):1160–1166. https://doi.org/10.1093/bib/bbx108

    Article  CAS  PubMed Central  Google Scholar 

  37. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  PubMed  Google Scholar 

  38. Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56(4):564–577. https://doi.org/10.1080/10635150701472164

    Article  CAS  PubMed  Google Scholar 

  39. Tan G, Muffato M, Ledergerber C, Herrero J, Goldman N, Gil M, Dessimoz C (2015) Current methods for automated filtering of multiple sequence alignments frequently worsen single-gene phylogenetic inference. Syst Biol 64(5):778–791. https://doi.org/10.1093/sysbio/syv033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Thorne JL, Goldman N (2004) Probabilistic models for the study of protein evolution. In: Handbook of statistical genetics. Wiley, Hoboken, New Jersey. https://doi.org/10.1002/0470022620.bbc05

    Chapter  Google Scholar 

  41. Echave J, Wilke CO (2017) Biophysical models of protein evolution: understanding the patterns of evolutionary sequence divergence. Annu Rev Biophys 46(1):85–103. https://doi.org/10.1146/annurev-biophys-070816-033819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang Z (1996) Among-site rate variation and its impact on phylogenetic analyses. Trends Ecol Evol 11(9):367–372. https://doi.org/10.1016/0169-5347(96)10041-0

    Article  CAS  PubMed  Google Scholar 

  43. Darriba D, Taboada GL, Doallo R, Posada D (2011) ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27(8):1164–1165. https://doi.org/10.1093/bioinformatics/btr088

    Article  CAS  PubMed  Google Scholar 

  44. Lefort V, Longueville J-E, Gascuel O (2017) SMS: Smart model selection in PhyML. Mol Biol Evol 34(9):2422–2424. https://doi.org/10.1093/molbev/msx149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313. https://doi.org/10.1093/bioinformatics/btu033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59(3):307–321. https://doi.org/10.1093/sysbio/syq010

    Article  CAS  PubMed  Google Scholar 

  47. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791

    Article  PubMed  Google Scholar 

  48. Efron B, Halloran E, Holmes S (1996) Bootstrap confidence levels for phylogenetic trees. Proc Natl Acad Sci U S A 93(23):13429–13429. https://doi.org/10.1073/pnas.93.23.13429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lemoine F, Domelevo Entfellner JB, Wilkinson E, Correia D, Dávila Felipe M, De Oliveira T, Gascuel O (2018) Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature 556(7702):452–456. https://doi.org/10.1038/s41586-018-0043-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61(3):539–542. https://doi.org/10.1093/sysbio/sys029

    Article  PubMed  PubMed Central  Google Scholar 

  51. Nascimento FF, Md R, Yang Z (2017) A biologist’s guide to Bayesian phylogenetic analysis. Nat Ecol Evolution 1(10):1446–1454. https://doi.org/10.1038/s41559-017-0280-x

    Article  Google Scholar 

  52. Felsenstein J, Felenstein J (2004) Inferring phylogenies, vol 2. Sinauer Associates, Sunderland, MA

    Google Scholar 

  53. Nixon KC, Carpenter JM (1993) ON OUTGROUPS. Cladistics 9(4):413–426. https://doi.org/10.1111/j.1096-0031.1993.tb00234.x

    Article  PubMed  Google Scholar 

  54. Mobbs JI, Di Paolo A, Metcalfe RD, Selig E, Stapleton DI, Griffin MDW, Gooley PR (2018) Unravelling the carbohydrate-binding preferences of the carbohydrate-binding modules of AMP-activated protein kinase. Chembiochem 19(3):229–238. https://doi.org/10.1002/cbic.201700589

    Article  CAS  PubMed  Google Scholar 

  55. Jones BJ, Bata Z, Kazlauskas RJ (2017) Identical active sites in Hydroxynitrile Lyases show opposite enantioselectivity and reveal possible ancestral mechanism. ACS Catal 7(6):4221–4229. https://doi.org/10.1021/acscatal.7b01108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hashimoto T, Hasegawa M (1996) Origin and early evolution of eukaryotes inferred from the amino acid sequences of translation elongation factors 1α/Tu and 2/G. Adv Biophys 32:73–120. https://doi.org/10.1016/0065-227X(96)84742-3

    Article  CAS  PubMed  Google Scholar 

  57. Mathews S, Clements MD, Beilstein MA (2010) A duplicate gene rooting of seed plants and the phylogenetic position of flowering plants. Philos Trans R Soc Lond Ser B Biol Sci 365(1539):383–395. https://doi.org/10.1098/rstb.2009.0233

    Article  Google Scholar 

  58. Kapli P, Yang Z, Telford MJ (2020) Phylogenetic tree building in the genomic age. Nat Rev Genet 21(7):428–444. https://doi.org/10.1038/s41576-020-0233-0

    Article  CAS  PubMed  Google Scholar 

  59. Bridgham JT, Keay J, Ortlund EA, Thornton JW (2014) Vestigialization of an allosteric switch: genetic and structural mechanisms for the evolution of constitutive activity in a steroid hormone receptor. PLoS Genet 10(1):e1004058. https://doi.org/10.1371/journal.pgen.1004058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wheeler LC, Anderson JA, Morrison AJ, Wong CE, Harms MJ (2018) Conservation of specificity in two low-specificity proteins. Biochemistry 57(5):684–695. https://doi.org/10.1021/acs.biochem.7b01086

    Article  CAS  PubMed  Google Scholar 

  61. Yang Z, Kumar S, Nei M (1995) A new method of inference of ancestral nucleotide and amino acid sequences. Genetics 141(4):1641–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yang Z (2014) Molecular evolution: a statistical approach. Oxford University Press, Oxford

    Book  Google Scholar 

  63. Hanson-Smith V, Kolaczkowski B, Thornton JW (2010) Robustness of ancestral sequence reconstruction to phylogenetic uncertainty. Mol Biol Evol 27(9):1988–1999. https://doi.org/10.1093/molbev/msq081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Eick GN, Bridgham JT, Anderson DP, Harms MJ, Thornton JW (2016) Robustness of reconstructed ancestral protein functions to statistical uncertainty. Mol Biol Evol 34(2):247–261. https://doi.org/10.1093/molbev/msw223

    Article  CAS  PubMed Central  Google Scholar 

  65. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591. https://doi.org/10.1093/molbev/msm088

    Article  CAS  PubMed  Google Scholar 

  66. Perez-Jimenez R, Inglés-Prieto A, Zhao Z-M, Sanchez-Romero I, Alegre-Cebollada J, Kosuri P, Garcia-Manyes S, Kappock TJ, Tanokura M, Holmgren A, Sanchez-Ruiz JM, Gaucher EA, Fernandez JM (2011) Single-molecule paleoenzymology probes the chemistry of resurrected enzymes. Nat Struct Mol Biol 18(5):592–596. https://doi.org/10.1038/nsmb.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Randall RN, Radford CE, Roof KA, Natarajan DK, Gaucher EA (2016) An experimental phylogeny to benchmark ancestral sequence reconstruction. Nat Commun 7(1):12847. https://doi.org/10.1038/ncomms12847

    Article  PubMed  PubMed Central  Google Scholar 

  68. Joy JB, Liang RH, McCloskey RM, Nguyen T, Poon AFY (2016) Ancestral reconstruction. PLOS Comput Biol 12(7):e1004763. https://doi.org/10.1371/journal.pcbi.1004763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pupko T, Doron-Faigenboim A, Liberles DA, Cannarozzi GM (2007) Probabilistic models and their impact on the accuracy of reconstructed ancestral protein sequences. In: Ancestral Sequence Reconstruction. Oxford Scolarship Online. https://doi.org/10.1093/acprof:oso/9780199299188.003.0004

  70. Aadland K, Kolaczkowski B (2020) Alignment-integrated reconstruction of ancestral sequences improves accuracy. Genome Biol Evol 12:1549–1565. https://doi.org/10.1093/gbe/evaa164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cannarozzi GM, Schneider A, Gonnet GH (2007) Probabilistic ancestral sequences based on the Markovian model of evolution–algorithms and applications. Ancestral Sequence Reconstruction 1(1):58

    Article  Google Scholar 

  72. Gumulya Y, Baek J-M, Wun S-J, Thomson RES, Harris KL, Hunter DJB, Behrendorff JBYH, Kulig J, Zheng S, Wu X, Wu B, Stok JE, De Voss JJ, Schenk G, Jurva U, Andersson S, Isin EM, Bodén M, Guddat L, Gillam EMJ (2018) Engineering highly functional thermostable proteins using ancestral sequence reconstruction. Nat Catal 1(11):878–888. https://doi.org/10.1038/s41929-018-0159-5

    Article  CAS  Google Scholar 

  73. Savory FR, Milner DS, Miles DC, Richards TA (2018) Ancestral function and diversification of a horizontally acquired oomycete carboxylic acid transporter. Mol Biol Evol 35(8):1887–1900. https://doi.org/10.1093/molbev/msy082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ugalde JA, Chang BSW, Matz MV (2004) Evolution of coral pigments recreated. Science 305(5689):1433. https://doi.org/10.1126/science.1099597

    Article  CAS  PubMed  Google Scholar 

  75. Siddiq MA, Loehlin DW, Montooth KL, Thornton JW (2017) Experimental test and refutation of a classic case of molecular adaptation in Drosophila melanogaster. Nat Ecol Evolution 1(2):0025. https://doi.org/10.1038/s41559-016-0025

    Article  Google Scholar 

  76. Gaucher EA (2007) Experimental resurrection of ancient biomolecules: gene synthesis, heterologous protein expression, and functional assays. In: Ancestral Sequence Reconstruction. Oxford Scolarship Online. https://doi.org/10.1093/acprof:oso/9780199299188.003.0014

  77. Starr TN, Thornton JW (2016) Epistasis in protein evolution. Protein Sci 25(7):1204–1218. https://doi.org/10.1002/pro.2897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Starr TN, Picton LK, Thornton JW (2017) Alternative evolutionary histories in the sequence space of an ancient protein. Nature 549(7672):409–413. https://doi.org/10.1038/nature23902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Conant GC, Wolfe KH (2008) Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet 9(12):938–950. https://doi.org/10.1038/nrg2482

    Article  CAS  PubMed  Google Scholar 

  80. Siddiq MA, Hochberg GK, Thornton JW (2017) Evolution of protein specificity: insights from ancestral protein reconstruction. Curr Opin Struct Biol 47:113–122. https://doi.org/10.1016/j.sbi.2017.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Consortium TU (2020) UniProt. ELIXIR. https://ebi12.uniprot.org/. Accessed 01 09 2020

  82. Consortium TU (2018) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47(D1):D506–D515. https://doi.org/10.1093/nar/gky1049

    Article  CAS  Google Scholar 

  83. Loewenstein Y, Raimondo D, Redfern OC, Watson J, Frishman D, Linial M, Orengo C, Thornton J, Tramontano A (2009) Protein function annotation by homology-based inference. Genome Biol 10(2):207. https://doi.org/10.1186/gb-2009-10-2-207

    Article  PubMed  PubMed Central  Google Scholar 

  84. Pible O, Hartmann EM, Imbert G, Armengaud J (2014) The importance of recognizing and reporting sequence database contamination for proteomics. EuPA Open Proteom 3:246–249. https://doi.org/10.1016/j.euprot.2014.04.001

    Article  CAS  Google Scholar 

  85. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17(6):368–376. https://doi.org/10.1007/BF01734359

    Article  CAS  PubMed  Google Scholar 

  86. Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol 29(2):170–179. https://doi.org/10.1007/BF02100115

    Article  CAS  PubMed  Google Scholar 

  87. Orengo CA, Thornton JM (2005) Protein families and their evolution—a structural perspective. Annu Rev Biochem 74(1):867–900. https://doi.org/10.1146/annurev.biochem.74.082803.133029

    Article  CAS  PubMed  Google Scholar 

  88. Tóth-Petróczy Á, Tawfik DS (2014) The robustness and innovability of protein folds. Curr Opin Struct Biol 26:131–138. https://doi.org/10.1016/j.sbi.2014.06.007

    Article  CAS  PubMed  Google Scholar 

  89. Das S, Dawson NL, Orengo CA (2015) Diversity in protein domain superfamilies. Curr Opin Genet Dev 35:40–49. https://doi.org/10.1016/j.gde.2015.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mascotti ML, Juri Ayub M, Furnham N, Thornton JM, Laskowski RA (2016) Chopping and changing: the evolution of the Flavin-dependent monooxygenases. J Mol Biol 428(15):3131–3146. https://doi.org/10.1016/j.jmb.2016.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Prakash A, Bateman A (2015) Domain atrophy creates rare cases of functional partial protein domains. Genome Biol 16(1):88–88. https://doi.org/10.1186/s13059-015-0655-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sillitoe I, Dawson N, Lewis TE, Das S, Lees JG, Ashford P, Tolulope A, Scholes HM, Senatorov I, Bujan A, Ceballos Rodriguez-Conde F, Dowling B, Thornton J, Orengo CA (2018) CATH: expanding the horizons of structure-based functional annotations for genome sequences. Nucleic Acids Res 47(D1):D280–D284. https://doi.org/10.1093/nar/gky1097

    Article  CAS  PubMed Central  Google Scholar 

  93. Lewis TE, Sillitoe I, Dawson N, Lam SD, Clarke T, Lee D, Orengo C, Lees J (2017) Gene3D: extensive prediction of globular domains in proteins. Nucleic Acids Res 46(D1):D435–D439. https://doi.org/10.1093/nar/gkx1069

    Article  CAS  PubMed Central  Google Scholar 

  94. El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A, Sonnhammer EL, Hirsh L, Paladin L, Piovesan D, Tosatto SCE, Finn RD (2018) The Pfam protein families database in 2019. Nucleic Acids Res 47(D1):D427–D432. https://doi.org/10.1093/nar/gky995

    Article  CAS  PubMed Central  Google Scholar 

  95. Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, Brown SD, Chang H-Y, El-Gebali S, Fraser MI, Gough J, Haft DR, Huang H, Letunic I, Lopez R, Luciani A, Madeira F, Marchler-Bauer A, Mi H, Natale DA, Necci M, Nuka G, Orengo C, Pandurangan AP, Paysan-Lafosse T, Pesseat S, Potter SC, Qureshi MA, Rawlings ND, Redaschi N, Richardson LJ, Rivoire C, Salazar GA, Sangrador-Vegas A, Sigrist CJA, Sillitoe I, Sutton GG, Thanki N, Thomas PD, Tosatto SCE, Yong S-Y, Finn RD (2018) InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res 47(D1):D351–D360. https://doi.org/10.1093/nar/gky1100

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

I thank Georg K. A. Hochberg for the enlighten discussion and for the suggestions about the chapter structure and contents. I also thank Callum R. Nicoll and Martín A. Palazzolo for their careful critical reading of the manuscript and to Marco W. Fraaije and Maximiliano Juri Ayub for their comments. This work was supported by the European Union’s Horizon 2020 research and innovation program under grant agreement No 847675 and the ANPCyT (Argentina) PICT 2016-2839 to MLM. MLM is a member of the Researcher Career of CONICET, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Laura Mascotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mascotti, M.L. (2022). Resurrecting Enzymes by Ancestral Sequence Reconstruction. In: Magnani, F., Marabelli, C., Paradisi, F. (eds) Enzyme Engineering. Methods in Molecular Biology, vol 2397. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1826-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1826-4_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1825-7

  • Online ISBN: 978-1-0716-1826-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics