Skip to main content

Focused Ultrasound-Mediated Intranasal Brain Drug Delivery Technique (FUSIN)

  • Protocol
  • First Online:
Biomedical Engineering Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2394))

Abstract

The blood–brain barrier (BBB) is the major barrier for brain drug delivery and limits the treatment options for central nervous system diseases. To circumvent the BBB, we introduced the focused ultrasound-mediated intranasal brain drug delivery (FUSIN) technique. FUSIN utilizes the nasal route for direct nose-to-brain drug administration, bypassing the BBB and minimizing systemic exposure. It also uses the transcranial application of ultrasound energy focused at a targeted brain region to induce microbubble cavitation, which enhances the transport of intranasally administered agents at the FUS-targeted brain location. FUSIN is unique in that it can achieve noninvasive and localized brain drug delivery with minimized systemic toxicity. The goal of this chapter is to provide a detailed protocol for FUSIN delivery to the mouse brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pardridge WM (2005) The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2(1):3–14

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lochhead JJ, Thorne RG (2012) Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev 64(7):614–628

    Article  CAS  PubMed  Google Scholar 

  3. Savale S, Mahajan H (2017) Nose to brain: a versatile mode of drug delivery system. Asian J Biomater Res 3(16):16–38

    Google Scholar 

  4. Hadaczek P et al (2006) The ‘perivascular pump’ driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Mol Ther 14(1):69–78

    Article  CAS  PubMed  Google Scholar 

  5. Nonaka N, Farr SA, Kageyama H, Shioda S, Banks WA (2008) Delivery of galanin-like peptide to the brain: targeting with intranasal delivery and cyclodextrins. J Pharmacol Exp Ther 325(2):513–519

    Article  CAS  PubMed  Google Scholar 

  6. Kumral A et al (2017) Intranasal surfactant protein D as neuroprotective rescue in a neonatal rat model of periventricular leukomalacia. J Matern Neonatal Med 30(4):446–451

    Article  CAS  Google Scholar 

  7. Rassu G et al (2017) Nose-to-brain delivery of BACE1 siRNA loaded in solid lipid nanoparticles for Alzheimer’s therapy. Colloid Surf B Biointerfaces 152:296–301

    Article  CAS  PubMed  Google Scholar 

  8. Zhuang X et al (2015) Grapefruit-derived nanovectors delivering therapeutic miR17 through an intranasal route inhibit brain tumor progression. Mol Ther 24(1):96–105

    Article  PubMed  PubMed Central  Google Scholar 

  9. Benedict C et al (2004) Intranasal insulin improves memory in humans. Psychoneuroendocrinology 29(10):1326–1334

    Article  CAS  PubMed  Google Scholar 

  10. Benedict C et al (2007) Intranasal insulin improves memory in humans: superiority of insulin aspart. Neuropsychopharmacology 32(1):239–243

    Article  CAS  PubMed  Google Scholar 

  11. Krishan M, Gudelsky GA, Desai PB, Genter MB (2014) Manipulation of olfactory tight junctions using papaverine to enhance intranasal delivery of gemcitabine to the brain. Drug Deliv 21(1):8–16

    Article  CAS  PubMed  Google Scholar 

  12. Zhao Y-Z et al (2016) Intranasal delivery of bFGF with nanoliposomes enhances in vivo neuroprotection and neural injury recovery in a rodent stroke model. J Control Release 224:165–175

    Article  CAS  PubMed  Google Scholar 

  13. Bernocchi B, Carpentier R, Lantier I, Ducournau C, Dimier-Poisson I, Betbeder D (2016) Mechanisms allowing protein delivery in nasal mucosa using NPL nanoparticles. J Control Release 232:42–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Muntimadugu E, Dhommati R, Jain A, Challa VGS, Shaheen M, Khan W (2016) Intranasal delivery of nanoparticle encapsulated tarenflurbil: apotential brain targeting strategy for Alzheimer’s disease. Eur J Pharm Sci 92:224–234

    Article  CAS  PubMed  Google Scholar 

  15. Illum L (2004) Is nose-to-brain transport of drugs in man a reality. J Pharm Pharmacol 56(1):3–17

    Article  CAS  PubMed  Google Scholar 

  16. Mistry A, Stolnik S, Illum L (2009) Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm 379(1):146–157

    Article  CAS  PubMed  Google Scholar 

  17. Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA (2001) Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 220(3):640–646

    Article  CAS  PubMed  Google Scholar 

  18. Choi JJ, Selert K, Vlachos F, Wong A, Konofagou EE (2011) Noninvasive and localized neuronal delivery using short ultrasonic pulses and microbubbles. Proc Natl Acad Sci U S A 108(40):16539–16544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu H-L et al (2010) Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain. Proc Natl Acad Sci U S A 107(34):15205–15210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sun T et al (2017) Closed-loop control of targeted ultrasound drug delivery across the blood–brain/tumor barriers in a rat glioma model. Proc Natl Acad Sci 114(48):E10281–E10290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Downs ME, Buch A, Karakatsani ME, Konofagou EE, Ferrera VP (2015) Blood-brain barrier opening in behaving non-human primates via focused ultrasound with systemically administered microbubbles. Sci Rep 5(October):15076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kamimura HAS, Flament J, Valette J, Cafarelli A, Badin RA, Larrat B (2019) Passive cavitation detection-based feedback control for ultrasound-mediated blood-brain barrier opening in non-human primates. J Cereb Blood Flow Metab 39(7):1191–1203

    Article  PubMed  Google Scholar 

  23. Karakatsani MEM, Samiotaki GM, Downs ME, Ferrera VP, Konofagou EE (2017) Targeting effects on the volume of the focused ultrasound-induced blood-brain barrier opening in nonhuman primates in vivo. IEEE Trans Ultrason Ferroelectr Freq Control 64(5):798–810

    Article  PubMed  PubMed Central  Google Scholar 

  24. Marquet F et al (2014) Real-time, transcranial monitoring of safe blood-brain barrier opening in non-human primates. PLoS One 9(2):e84310

    Article  PubMed  PubMed Central  Google Scholar 

  25. Arvanitis CD, Livingstone MS, Vykhodtseva N, McDannold N (2012) Controlled ultrasound-induced blood-brain barrier disruption using passive acoustic emissions monitoring. PLoS One 7(9):e45783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lipsman N et al (2018) Blood–brain barrier opening in Alzheimer’s disease using MR-guided focused ultrasound. Nat Commun 9(1):2336

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mainprize T et al (2019) Blood-brain barrier opening in primary brain tumors with non-invasive MR-guided focused ultrasound: a clinical safety and feasibility study. Sci Rep 9(1):321

    Article  PubMed  PubMed Central  Google Scholar 

  28. Abrahao A et al (2019) First-in-human trial of blood–brain barrier opening in amyotrophic lateral sclerosis using MR-guided focused ultrasound. Nat Commun 10(1):4373

    Article  PubMed  PubMed Central  Google Scholar 

  29. Upadhyay A, Dalvi SV (2019) Microbubble formulations: synthesis, stability, modeling and biomedical applications. Ultrasound Med Biol 45(2):301–343

    Article  PubMed  Google Scholar 

  30. Ferrara K, Pollard R, Borden M (2007) Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu Rev Biomed Eng 9:415–447

    Article  CAS  PubMed  Google Scholar 

  31. Sboros V (2008) Response of contrast agents to ultrasound. Adv Drug Deliv Rev 60(10):1117–1136

    Article  CAS  PubMed  Google Scholar 

  32. Chen H, Kreider W, Brayman AA, Bailey MR, Matula TJ (2011) Blood vessel deformations on microsecond time scales by ultrasonic cavitation. Phys Rev Lett 106(3):034301

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chen H, Brayman AA, Bailey MR, Matula TJ (2010) Blood vessel rupture by cavitation. Urol Res 38(4):321–326

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chen H, Yang GZX, Getachew H, Acosta C, Sierra Sánchez C, Konofagou EE (2016) Focused ultrasound-enhanced intranasal brain delivery of brain-derived neurotrophic factor. Sci Rep 6(February):28599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen H, Chen CC, Acosta C, Wu S-Y, Sun T, Konofagou EE (2014) A new brain drug delivery strategy: focused ultrasound-enhanced intranasal drug delivery. PLoS One 9(10):e108880

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ye D et al (2018) Focused ultrasound-enabled delivery of radiolabeled nanoclusters to the pons. J Control Release 283:143–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ji R et al (2019) Focused ultrasound enhanced intranasal delivery of brain derived neurotrophic factor produces neurorestorative effects in a Parkinson’s disease mouse model. Sci Rep 9:19402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Feshitan JA, Chen CC, Kwan JJ, Borden MA (2009) Microbubble size isolation by differential centrifugation. J Colloid Interface Sci 329(2):316–324

    Article  CAS  PubMed  Google Scholar 

  39. Wang S, Samiotaki G, Olumolade O, Feshitan JA, Konofagou EE (2014) Microbubble type and distribution dependence of focused ultrasound-induced blood-brain barrier opening. Ultrasound Med Biol 40(1):130–137

    Article  PubMed  Google Scholar 

  40. Franklin KBJ, Paxinos G (2007) The mouse brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  41. McDannold N, Vykhodtseva N, Hynynen K (2008) Effects of acoustic parameters and ultrasound contrast agent dose on focused-ultrasound induced blood-brain barrier disruption. Ultrasound Med Biol 34(6):930–937

    Article  PubMed  PubMed Central  Google Scholar 

  42. McDannold N, Vykhodtseva N, Hynynen K (2008) Blood-brain barrier disruption induced by focused ultrasound and circulating preformed microbubbles appears to be characterized by the mechanical index. Ultrasound Med Biol 34(5):834–840

    Article  PubMed  PubMed Central  Google Scholar 

  43. Choi JJ, Pernot M, Small SA, Konofagou EE (2007) Noninvasive, transcranial and localized opening of the blood-brain barrier using focused ultrasound in mice. Ultrasound Med Biol 33(1):95–104

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was in part supported by the National Institutes of Health (NIH) grant R01MH116981 and R01EB027223.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ye, D., Chen, H. (2022). Focused Ultrasound-Mediated Intranasal Brain Drug Delivery Technique (FUSIN). In: Rasooly, A., Baker, H., Ossandon, M.R. (eds) Biomedical Engineering Technologies. Methods in Molecular Biology, vol 2394. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1811-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1811-0_26

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1810-3

  • Online ISBN: 978-1-0716-1811-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics