Skip to main content

TdT-dUTP DSB End Labeling (TUDEL), for Specific, Direct In Situ Labeling of DNA Double Strand Breaks

  • Protocol
  • First Online:
Biomedical Engineering Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2394))

Abstract

The genome of a living cell is continuously damaged by various exogenous and endogenous factors yielding multiple types of DNA damage including base damage and damage to the sugar-phosphate backbone of DNA. Double Strand Breaks (DSBs) are the most severe form of DNA damage and if left unchecked, may precipitate genomic rearrangements, cell death or contribute to malignancy. In clinical contexts, radiation is often used to induce DSBs as a form of genotoxic therapy. Despite the importance of DSBs and their repair, as yet there is no facile assay to detect DSBs in situ or to quantify their location or proximity to other cellular constituents. Such an assay would help to disentangle DDR signaling pathways and identify new molecular players involved in DSB repair. These efforts, in turn, may facilitate drug screening and accelerate the discovery of novel, more effective genotoxic agents. We have developed such an assay, presented here, and term it TdT-dUTP DSB End Labeling (TUDEL).

TUDEL makes use of Terminal Deoxynucleotidyl Transferase (TdT), a template-independent DNA polymerase. TdT is commonly used in TUNEL assays to yield a binary output of DNA damage. We have adapted this approach, using TdT and EdUTP to label individual DNA double strand breaks in irradiated cells and detecting the incorporated EdU with fluorescent probes via Click chemistry. This tool complements and is compatible with existing, indirect methods to track DSBs such as immunofluorescent detection of γH2AX. TUDEL is also sufficiently specific, sensitive, quantitative, and robust to replace the neutral Comet assay for routine measurement of DSB formation and repair. Here we present a protocol for TUDEL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yamamori T, Yasui H, Yamazumi M et al (2012) Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint. Free Radic Biol Med 53:260–270. https://doi.org/10.1016/j.freeradbiomed.2012.04.033

    Article  CAS  PubMed  Google Scholar 

  2. Li L, Story M, Legerski RJ (2001) Cellular responses to ionizing radiation damage. Int J Radiat Oncol 49(4):1157–1162. https://doi.org/10.1016/S0360-3016(00)01524-8

    Article  CAS  Google Scholar 

  3. Curtin NJ (2012) DNA repair dysregulation from cancer driver to therapeutic target. Nat Rev Cancer 12(12):801–817. https://doi.org/10.1038/nrc3399

    Article  CAS  PubMed  Google Scholar 

  4. Gibson BA, Lee KW (2012) New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat Rev Mol Cell Biol 13. https://doi.org/10.1038/nrm3376

  5. Blackford AN, Jackson SP (2017) Molecular cell review ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol Cell 66:801–817. https://doi.org/10.1016/j.molcel.2017.05.015

    Article  CAS  PubMed  Google Scholar 

  6. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273(10):5858–5868. https://doi.org/10.1074/JBC.273.10.5858

    Article  CAS  PubMed  Google Scholar 

  7. Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421(6922):499–506. https://doi.org/10.1038/nature01368

    Article  CAS  PubMed  Google Scholar 

  8. Chapman JR, Taylor MRG, Boulton SJ (2012) Playing the end game: DNA double-Strand break repair pathway choice. Mol Cell 47(4):497–510. https://doi.org/10.1016/j.molcel.2012.07.029

    Article  CAS  PubMed  Google Scholar 

  9. Jeggo PA, Downs JA, Gasser SM (2017) Chromatin modifiers and remodellers in DNA repair and signalling. Philos Trans R Soc B Biol Sci 372(1731):20160279. https://doi.org/10.1098/rstb.2016.0279

    Article  CAS  Google Scholar 

  10. Ghezraoui H, Oliveira C, Becker JR et al (2018) 53BP1 cooperation with the REV7–shieldin complex underpins DNA structure-specific NHEJ. Nature 560(7716):122–127. https://doi.org/10.1038/s41586-018-0362-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gupta R, Somyajit K, Narita T et al (2018) DNA repair network analysis reveals Shieldin as a key regulator of NHEJ and PARP inhibitor sensitivity. Cell 173(4):972–988.e23. https://doi.org/10.1016/j.cell.2018.03.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Min J, Guo K, Suryadevara PK et al (2016) Optimization of a novel series of ataxia-telangiectasia mutated kinase inhibitors as potential Radiosensitizing agents. J Med Chem 59(2):559–577. https://doi.org/10.1021/acs.jmedchem.5b01092

    Article  CAS  PubMed  Google Scholar 

  13. Pilié PG, Tang C, Mills GB, Yap TA (2018) State-of-the-art strategies for targeting the DNA damage response in cancer. Nat Rev Clin Oncol 1. https://doi.org/10.1038/s41571-018-0114-z

  14. De Schutter H, Nuyts S (2009) Radiosensitizing potential of epigenetic anticancer drugs. Anti Cancer Agents Med Chem 9(1):99–108. http://www.ncbi.nlm.nih.gov/pubmed/19149485. Accessed September 18, 2018

    Article  Google Scholar 

  15. Arnoult N, Correia A, Ma J et al (2017) Regulation of DNA repair pathway choice in S and G2 phases by the NHEJ inhibitor CYREN. Nature 549(7673):548–552. https://doi.org/10.1038/nature24023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lomax ME, Folkes LK, O’Neill P (2013) Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clin Oncol 25(10):578–585. https://doi.org/10.1016/J.CLON.2013.06.007

    Article  CAS  Google Scholar 

  17. Higgins GS, Boultonb SJ (2018) Beyond PARP—POLu as an anticancer target. Science 359(6381):1217–1218. https://doi.org/10.1126/science.aar5149

    Article  CAS  PubMed  Google Scholar 

  18. Budke B, Lv W, Kozikowski AP, Connell PP (2016) Recent developments using small molecules to target RAD51: how to best modulate RAD51 for anticancer therapy? ChemMedChem 11(22):2468–2473. https://doi.org/10.1002/cmdc.201600426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hoppe MM, Sundar R, Tan DSP, Jeyasekharan AD (2018) Biomarkers for homologous recombination deficiency in cancer. J Natl Cancer Inst 110(7):704–713. https://doi.org/10.1093/jnci/djy085

    Article  CAS  PubMed  Google Scholar 

  20. Konstantinopoulos PA, Ceccaldi R, Shapiro GI, D’Andrea AD (2015) Homologous recombination deficiency: exploiting the fundamental vulnerability of ovarian cancer. Cancer Discov 5(11):1137–1154. https://doi.org/10.1158/2159-8290.CD-15-0714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. D’Andrea AD (2018) Mechanisms of PARP inhibitor sensitivity and resistance. DNA Repair (Amst) 71:172–176. https://doi.org/10.1016/J.DNAREP.2018.08.021

    Article  Google Scholar 

  22. Olive PL, Wlodek D, Banáth JP (1991) DNA double-strand breaks measured in individual cells subjected to gel electrophoresis. Cancer Res 51(17):4671–4676. http://www.ncbi.nlm.nih.gov/pubmed/1873812. Accessed August 13, 2019

    CAS  PubMed  Google Scholar 

  23. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175(1):184–191. https://doi.org/10.1016/0014-4827(88)90265-0

    Article  CAS  PubMed  Google Scholar 

  24. Nandhakumar S, Parasuraman S, Shanmugam MM, Rao KR, Chand P, Bhat BV (2011) Evaluation of DNA damage using single-cell gel electrophoresis (comet assay). J Pharmacol Pharmacother 2(2):107–111. https://doi.org/10.4103/0976-500X.81903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Labay E, Efimova EV, Quarshie BK, Golden DW, Weichselbaum RR, Kron SJ (2011) Ionizing radiation-induced foci persistence screen to discover enhancers of accelerated senescence. Int J High Throughput Screen 2:1–13. https://doi.org/10.2147/IJHTS.S17076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Labay E, Mauceri HJ, Efimova EV, Flor AC, Sutton HG, Kron SJ, Weichselbaum RR (2016) Repurposing cephalosporin antibiotics as pro-senescent radiosensitizers. Oncotarget 7(23):33919–33933. https://doi.org/10.18632/oncotarget.8984

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu Y, Efimova EV, Ramamurthy A, Kron SJ (2019) Repair-independent functions of DNA-PKcs protect irradiated cells from mitotic slippage and accelerated senescence. J Cell Sci 132(13):jcs229385. https://doi.org/10.1242/jcs.229385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dylan A, Reid Sarah, Keegan Alejandra, Leo-Macias Go, Watanabe Natasha T, Strande Howard H, Chang Betul Akgol, Oksuz David, Fenyo Michael R, Lieber Dale A, Ramsden Eli, Rothenberg (2015) Organization and dynamics of the nonhomologous end-joining machinery during DNA double-strand break repair. Proceedings of the National Academy of Sciences 112(20):E2575-E2584. https://doi.org/10.1073/pnas.1420115112

  29. Galbiati A, Beauséjour C (2017) d’Adda di Fagagna F. a novel single-cell method provides direct evidence of persistent DNA damage in senescent cells and aged mammalian tissues. Aging Cell 16(2):422–427. https://doi.org/10.1111/acel.12573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yan WX, Mirzazadeh R, Garnerone S et al (2017) BLISS is a versatile and quantitative method for genome-wide profiling of DNA double-strand breaks. Nat Commun 8:15058. https://doi.org/10.1038/ncomms15058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Profiling G, Breaks DNAD, Mirzazadeh R, Kallas T, Bienko M, Crosetto N (2018) Genome-Wide Profiling of DNA Double-Strand Breaks by the BLESS and BLISS Methods. Methods Mol Biol 1672:167–194. https://doi.org/10.1007/978-1-4939-7306-4

    Article  Google Scholar 

  32. Hornsby PJ, Didenko VV (2011) In situ ligation: a decade and a half of experience. Methods Mol Biol 682:49–63. https://doi.org/10.1007/978-1-60327-409-8_5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Galbiati A, d’Adda di Fagagna F (2019) DNA damage in situ ligation followed by proximity ligation assay (DI-PLA). Methods Mol Biol 1896:11–20. https://doi.org/10.1007/978-1-4939-8931-7_2

    Article  CAS  PubMed  Google Scholar 

  34. Bollum FJ (1960) Calf Thymus Polymerase. Vol 235. http://www.jbc.org/. Accessed September 19, 2018

  35. Gilfillan S, Dierich A, Lemeur M, Benoist C, Mathis D (1993) Mice lacking TdT: mature animals with an immature lymphocyte repertoire. Science 261(5125):1175–1178. http://www.ncbi.nlm.nih.gov/pubmed/8356452. Accessed September 19, 2018

    Article  CAS  PubMed  Google Scholar 

  36. Motea EA, Berdis AJ (2010) Terminal deoxynucleotidyl transferase: the story of a misguided DNA polymerase. Biochim Biophys Acta 1804(5):1151–1166. https://doi.org/10.1016/j.bbapap.2009.06.030

    Article  CAS  PubMed  Google Scholar 

  37. Winz ML, Linder EC, André T, Becker J, Jäschke A (2015) Nucleotidyl transferase assisted DNA labeling with different click chemistries. Nucleic Acids Res 43(17):e110. https://doi.org/10.1093/nar/gkv544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Leduc F, Faucher D, Bikond Nkoma G et al (2011) Genome-wide mapping of DNA Strand Breaks. PLoS One 6(2):e17353. https://doi.org/10.1371/journal.pone.0017353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bradshaw PS, Stavropoulos DJ, Meyn MS (2005) Human telomeric protein TRF2 associates with genomic double-strand breaks as an early response to DNA damage. Nat Genet 37(2):193–197. https://doi.org/10.1038/ng1506

    Article  CAS  PubMed  Google Scholar 

  40. Natale F, Rapp A, Yu W et al (2017) Identification of the elementary structural units of the DNA damage response. Nat Commun 8:15760. https://doi.org/10.1038/ncomms15760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Illner D, Scherthan H (2013) Ionizing irradiation-induced radical stress stalls live meiotic chromosome movements by altering the actin cytoskeleton. Proc Natl Acad Sci U S A 110(40):16027–16032. https://doi.org/10.1073/pnas.1306324110

    Article  PubMed  PubMed Central  Google Scholar 

  42. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  43. Rueden CT, Schindelin J, Hiner MC et al (2017) ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18(1):529. https://doi.org/10.1186/s12859-017-1934-z

    Article  PubMed  PubMed Central  Google Scholar 

  44. Britton S, Coates J, Jackson SP (2013) A new method for high-resolution imaging of Ku foci to decipher mechanisms of DNA double-strand break repair. J Cell Biol 202(3):579–595. https://doi.org/10.1083/jcb.201303073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lapytsko A, Kollarovic G, Ivanova L, Studencka M, Schaber J (2015) FoCo: a simple and robust quantification algorithm of nuclear foci. BMC Bioinformatics 16(1):392. https://doi.org/10.1186/s12859-015-0816-5

    Article  PubMed  PubMed Central  Google Scholar 

  46. Herbert AD, Carr AM, Hoffmann E (2014) FindFoci: a focus detection algorithm with automated parameter training that closely matches human assignments, reduces human inconsistencies and increases speed of analysis. Lichten M, ed. PLoS One 9(12):e114749. https://doi.org/10.1371/journal.pone.0114749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ovesný M, Křížek P, Borkovec J, Švindrych Z, Hagen GM (2014) ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30(16):2389–2390. https://doi.org/10.1093/bioinformatics/btu202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shivanandan A, Radenovic A, Sbalzarini IF (2013) MosaicIA: an ImageJ/Fiji plugin for spatial pattern and interaction analysis. BMC Bioinformatics 14(1):349. https://doi.org/10.1186/1471-2105-14-349

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bolte S, Cordelières FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224(3):213–232. https://doi.org/10.1111/j.1365-2818.2006.01706.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Vytas Bindokas and staff of the Integrated Light Microscopy Core for guidance with conventional and superresolution microscopy and image analysis. This work was funded by NCI IMAT grant R21 CA213247 to S.J.K. and NCI CCSG P30 CA014599 that supports the Integrated Light Microscopy Core. TdT-UTP DSB End Labeling (TUDEL), for Specific, Direct In Situ Labeling of DNA Double Strand Breaks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Kron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lutze, J., Warrington, S.E., Kron, S.J. (2022). TdT-dUTP DSB End Labeling (TUDEL), for Specific, Direct In Situ Labeling of DNA Double Strand Breaks. In: Rasooly, A., Baker, H., Ossandon, M.R. (eds) Biomedical Engineering Technologies. Methods in Molecular Biology, vol 2394. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1811-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1811-0_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1810-3

  • Online ISBN: 978-1-0716-1811-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics