Skip to main content

Ultrasensitive Label-Free Nucleic-Acid Biosensors Based on Bimodal Waveguide Interferometers

  • Protocol
  • First Online:
Biomedical Engineering Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2393))

Abstract

The bimodal waveguide (BiMW) biosensor is an innovative common path interferometric sensor based on the evanescent field detection principle. This biosensor allows for the direct detection of virtually any biomolecular interaction in a label-free scheme by using specific biorecognition elements. Due to its inherent ultrasensitivity, it has been employed for the monitoring of relevant nucleic-acid sequences such as mRNA transcripts or microRNAs present at the attomolar–femtomolar concentration level in human samples. The application of the BiMW biosensor to detect these nucleic acids can be a powerful analytical tool for diagnosis and prognosis of complex illnesses, such as cancer, where these biomarkers play a major role. The BiMW sensor is fabricated using standard silicon-based microelectronics technology, which allows its miniaturization and cost-effective production, meeting the requirements of portability and disposability for the development of point-of-care (PoC) sensing platforms.

In this chapter, we describe the working principle of the BiMW biosensor as well as its application for the analysis of nucleic acids. Concretely, we show a detailed description of DNA functionalization procedures and the complete analysis of two different RNA biomarkers for cancer diagnosis: (1) the analysis of mRNA transcripts generated by alternative splicing of Fas gene, and (2) the detection of miRNA 181a from urine liquid biopsies, for the early diagnosis of bladder cancer. The biosensing detection is performed by a direct assay in real time, by monitoring the changes in the intensity pattern of the light propagating through the BiMW biosensor, due to the hybridization of the target with the specific DNA probe previously functionalized on the BiMW sensor surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mens MMJ, Ghanbari M (2018) Cell cycle regulation of stem cells by MicroRNAs. Stem Cell Rev Rep 14:309–322

    Article  CAS  Google Scholar 

  2. Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15:7–21

    Article  CAS  Google Scholar 

  3. Mori MA (2018) Editorial: non-coding RNAs: entwining metabolism and aging. Front Endocrinol (Lausanne) 9:111

    Article  Google Scholar 

  4. Girotti MR, Gremel G, Lee R et al (2016) Application of sequencing, liquid biopsies, and patient-derived xenografts for personalized medicine in melanoma. Cancer Discov 6:286–299

    Article  CAS  Google Scholar 

  5. Huertas CS, Calvo-Lozano O, Mitchell A et al (2019) Advanced evanescent-wave optical biosensors for the detection of nucleic acids: an analytic perspective. Front Chem 7:724

    Article  CAS  Google Scholar 

  6. Hunsperger RG (2009) Integrated optics: theory and technology, 6th edn. Springer, New York

    Book  Google Scholar 

  7. Haruna M, Nishihara H (1989) Optical integrated circuits. 56:469–472

    Google Scholar 

  8. Zinoviev KE, González-Guerrero AB, Domínguez C et al (2011) Integrated bimodal waveguide interferometric biosensor for label-free analysis. J Light Technol 29:1926–1930

    Article  Google Scholar 

  9. Dante S, Duval D, Sepúlveda B et al (2012) All-optical phase modulation for integrated interferometric biosensors. Opt Express 20:7195

    Article  CAS  Google Scholar 

  10. Huertas CS, Domínguez-Zotes S, Lechuga LM (2017) Analysis of alternative splicing events for cancer diagnosis using a multiplexing nanophotonic biosensor. Sci Rep 7:41368

    Article  CAS  Google Scholar 

  11. Huertas CS, Fariña D, Lechuga LM (2016) Direct and label-free quantification of micro-RNA-181a at Attomolar level in complex media using a Nanophotonic biosensor. ACS Sensors 1:748–756

    Article  CAS  Google Scholar 

  12. Huertas CS, Aviñó A, Kurachi C et al (2018) Label-free DNA-methylation detection by direct ds-DNA fragment screening using poly-purine hairpins. Biosens Bioelectron 120:47–54

    Article  CAS  Google Scholar 

  13. Aviñó A, Jorge AF, Huertas CS et al (2019) Aptamer-peptide conjugates as a new strategy to modulate human α-thrombin binding affinity. Biochim Biophys Acta Gen Subj 1863:1619–1630

    Article  Google Scholar 

  14. Gandhiraman RP, Gubala V, Nam LCH et al (2010) Deposition of chemically reactive and repellent sites on biosensor chips for reduced non-specific binding. Colloids Surfaces B Biointerfaces 79(1):270–275

    Article  CAS  Google Scholar 

  15. Gokmen MT, Brassinne J, Prasath RA et al (2011) Revealing the nature of thio-click reactions on the solid phase. Chem Commun (Camb) 47:4652–4654

    Article  CAS  Google Scholar 

  16. Huertas CS, Carrascosa LG, Bonnal S et al (2016) Quantitative evaluation of alternatively spliced mRNA isoforms by label-free real-time plasmonic sensing. Biosens Bioelectron 78:118–125

    Article  CAS  Google Scholar 

  17. Huertas CS, Bonnal S, Soler M et al (2019) Site-specific mRNA cleavage for selective and quantitative profiling of alternative splicing with label-free optical biosensors. Anal Chem 91:15138–15146

    Article  CAS  Google Scholar 

  18. Ragan C, Zuker M, Ragan MA (2011) Quantitative prediction of miRNA-mRNA interaction based on equilibrium concentrations. PLoS Comput Biol 7(2):e1001090

    Article  CAS  Google Scholar 

  19. O’Brien J, Hayder H, Zayed Y et al (2018) Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 9:402

    Article  Google Scholar 

  20. Qu A, Sun M, Xu L et al (2019) Quantitative zeptomolar imaging of miRNA cancer markers with nanoparticle assemblies. Proc Natl Acad Sci U S A 116(9):3391

    Article  CAS  Google Scholar 

  21. Huertas CS, Villaverde A, Lechuga LM (2016), Nanophotonic biosensors for deciphering cell regulation pathways. https://ddd.uab.cat/pub/tesis/2016/hdl_10803_368562/csh1de1.pdf

  22. Szydzik C, Niego B, Dalzell G et al (2016) Fabrication of complex PDMS microfluidic structures and embedded functional substrates by one-step injection moulding. RSC Adv 6:87988–87994

    Article  CAS  Google Scholar 

  23. Knoerzer M, Szydzik C, Ren G et al (2019) Optical frequency comb based system for photonic refractive index sensor interrogation. Opt Express 27:21532

    Article  CAS  Google Scholar 

  24. Herranz S, Gavela AF, Lechuga LM (2017) Label-free biosensors based on bimodal waveguide (BiMW) interferometers. Methods Mol Biol 1571:161–185

    Article  CAS  Google Scholar 

  25. Chocarro-Ruiz B, Herranz S, Fernández Gavela A et al (2018) Interferometric nanoimmunosensor for label-free and real-time monitoring of Irgarol 1051 in seawater. Biosens Bioelectron 117:47–52

    Article  CAS  Google Scholar 

Download references

Acknowledgments

ICN2 is supported by the “Severo Ochoa Centers of Excellence” Program from the Spanish Ministry of Science (MINECO) (Grant No. SEV-2017-0706).

Dr. Cesar S. Huertas is a recipient of an RMIT Vice Chancellor’s Postdoctoral Fellowship.

A substantial part of the content of this chapter has been adapted from a previous version of this chapter [24] the doctoral thesis Nanophotonics biosensors for deciphering cell regulation pathways [21].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesar S. Huertas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Huertas, C.S., Lechuga, L.M. (2022). Ultrasensitive Label-Free Nucleic-Acid Biosensors Based on Bimodal Waveguide Interferometers. In: Ossandon, M.R., Baker, H., Rasooly, A. (eds) Biomedical Engineering Technologies. Methods in Molecular Biology, vol 2393. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1803-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1803-5_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1802-8

  • Online ISBN: 978-1-0716-1803-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics