Skip to main content

Quantitative Bioluminescence Tomography for In Vivo Volumetric-Guided Radiotherapy

  • Protocol
  • First Online:
Biomedical Engineering Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2393))

Abstract

Several groups, including ours, have initiated efforts to develop small-animal irradiators that mimic radiation therapy (RT) for human treatment. The major image modality used to guide irradiation is cone-beam computed tomography (CBCT). While CBCT provides excellent guidance capability, it is less adept at localizing soft tissue targets growing in a low image contrast environment. In contrast, bioluminescence imaging (BLI) provides strong image contrast and thus is an attractive solution for soft tissue targeting. However, commonly used 2D BLI on an animal surface is inadequate to guide irradiation, because optical transport from an internal bioluminescent tumor is highly susceptible to the effects of optical path length and tissue absorption and scattering. Recognition of these limitations led us to integrate 3D bioluminescence tomography (BLT) with the small animal radiation research platform (SARRP). In this chapter, we introduce quantitative BLT (QBLT) with the advanced capabilities of quantifying tumor volume for irradiation guidance. The detail of system components, calibration protocol, and step-by-step procedure to conduct the QBLT-guided irradiation are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wong J, Armour E, Kazanzides P et al (2008) High-resolution, small animal radiation research platform with X-ray tomographic guidance capabilities. Int J Radiat Oncol Biol Phys 71:1591–1599

    Article  Google Scholar 

  2. Matinfar M, Ford E, Iordachita I et al (2009) Image-guided small animal radiation research platform: calibration of treatment beam alignment. Phys Med Biol 54:891–905

    Article  Google Scholar 

  3. Dilworth JT, Krueger SA, Wilson GD et al (2014) Preclinical models for translational research should maintain pace with modern clinical practice. Int J Radiat Oncol Biol Phys 88:540–544

    Article  Google Scholar 

  4. SARRP by Xstrahl Inc. https://xstrahl.com/us/life-science-systems/small-animal-radiation-research-platform/

  5. Herter-Sprie GS, Korideck H, Christensen CL et al (2014) Image-guided radiotherapy platform using single nodule conditional lung cancer mouse models. Nat Commun 5:5870

    Article  CAS  Google Scholar 

  6. Seifert L, Werba G, Tiwari S et al (2016) Radiation therapy induces macrophages to suppress T-cell responses against pancreatic tumors in mice. Gastroenterology 150:1659–1672

    Article  Google Scholar 

  7. Chandra A, Lin T, Tribble MB et al (2014) PTH1-34 alleviates radiotherapy-induced local bone loss by improving osteoblast and osteocyte survival. Bone 67:33–40

    Article  CAS  Google Scholar 

  8. Thorne SH, Contag CH (2005) Using in vivo bioluminescence imaging to shed light on cancer biology. Proc IEEE 93:750–762

    Article  CAS  Google Scholar 

  9. O’Neill K, Lyons SK, Gallagher WM et al (2010) Bioluminescent imaging: a critical tool in pre-clinical oncology research. J Pathol 220:317–327

    Article  Google Scholar 

  10. Close DM, Xu TT, Sayler GS et al (2011) In vivo bioluminescent imaging (BLI): noninvasive visualization and interrogation of biological processes in living animals. Sensors 11:180–206

    Article  CAS  Google Scholar 

  11. Yu JJ, Zhang B, Iordachita II et al (2016) Systematic study of target localization for bioluminescence tomography guided radiation therapy. Med Phys 43:2619–2629

    Article  Google Scholar 

  12. Zhang B, Wang KKH, Yu JJ et al (2016) Bioluminescence tomography-guided radiation therapy for preclinical research. Int J Radiat Oncol Biol Phys 94:1144–1153

    Article  Google Scholar 

  13. Deng Z, Xu X, Garzon-Muvdi T et al (2020) In vivo bioluminescence tomography center of mass-guided conformal irradiation. Int J Radiat Oncol Biol Phys 106:612–620

    Article  CAS  Google Scholar 

  14. Zhang B, Iordachita I, Wong JW et al (2016) Multi-projection bioluminescence tomography guided system for small animal radiation research platform (SARRP). SPIE BiOS 2016: multimodal biomedical imaging XI, San Francisco, CA, USA. Proc SPIE 9701:97010J. https://doi.org/10.1117/12.2211869

  15. Dehghani H, Guggenheim JA, Taylor SL et al (2018) Quantitative bioluminescence tomography using spectral derivative data. Biomed Opt Express 9:4163–4174

    Article  CAS  Google Scholar 

  16. Jermyn M, Ghadyani H, Mastanduno MA et al (2013) Fast segmentation and high-quality three-dimensional volume mesh creation from medical images for diffuse optical tomography. J Biomed Opt 18:10

    Article  Google Scholar 

  17. Dehghani H, Eames ME, Yalavarthy PK et al (2009) Near infrared optical tomography using NIRFAST: algorithm for numerical model and image reconstruction. Commun Numer Methods Eng 25:711–732

    Article  Google Scholar 

  18. NIRFAST. https://www.dartmouth.edu/~nir/nirfast/

  19. Kikinis R, Pieper SD, Vosburgh KG (2014) 3D slicer: a platform for subject-specific image analysis, visualization, and clinical support. In: Jolesz FA (ed) Intraoperative imaging and image-guided therapy. Springer New York, New York, NY, pp 277–289. https://doi.org/10.1007/978-1-4614-7657-3_19

    Chapter  Google Scholar 

  20. Fedorov A, Beichel R, Kalpathy-Cramer J et al (2012) 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30:1323–1341

    Article  Google Scholar 

  21. 3D Slicer. https://www.slicer.org/

  22. Kuo C, Coquoz O, Troy TL et al (2007) Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging. J Biomed Opt 12:024007

    Article  Google Scholar 

  23. Dehghani H, Davis SC, Jiang SD et al (2006) Spectrally resolved bioluminescence optical tomography. Opt Lett 31:365–367

    Article  Google Scholar 

  24. Zhang B, Wong JW, Iordachita II et al (2016) Evaluation of on- and off-line bioluminescence tomography system for focal irradiation guidance. Radiat Res 186:592–601

    Article  CAS  Google Scholar 

  25. Zeng J, See AP, Phallen J et al (2013) Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys 86:343–349

    Article  CAS  Google Scholar 

  26. Kindy MS, Yu J, Zhu H et al (2016) A therapeutic cancer vaccine against GL261 murine glioma. J Transl Med 14:9

    Article  Google Scholar 

  27. Ogoh K, Akiyoshi R, May MT et al (2014) Bioluminescence microscopy using a short focal-length imaging lens. J Microsc 253:191–197

    Article  CAS  Google Scholar 

  28. Basevi HRA, Tichauer KM, Leblond F et al (2012) Compressive sensing based reconstruction in bioluminescence tomography improves image resolution and robustness to noise. Biomed Opt Express 3:2131–2141

    Article  Google Scholar 

  29. Lin AJ, Koike MA, Green KN et al (2011) Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease. Ann Biomed Eng 39:1349–1357

    Article  Google Scholar 

  30. Zhao H, Doyle TC, Coquoz O et al (2005) Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo. J Biomed Opt 10:41210

    Article  Google Scholar 

  31. Branchini BR, Southworth TL, DeAngelis JP et al (2006) Luciferase from the Italian firefly Luciola italica: molecular cloning and expression. Comp Biochem Physiol B Biochem Mol Biol 145:159–167

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the funding support from CPRIT RR200042, NIH-NCI (R21CA223403, R37CA230341, R01CA240811, and P30CA006973), and Xstrahl Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Kang-Hsin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Deng, Z. et al. (2022). Quantitative Bioluminescence Tomography for In Vivo Volumetric-Guided Radiotherapy. In: Ossandon, M.R., Baker, H., Rasooly, A. (eds) Biomedical Engineering Technologies. Methods in Molecular Biology, vol 2393. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1803-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1803-5_38

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1802-8

  • Online ISBN: 978-1-0716-1803-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics