Skip to main content

Mixed Modeling Frameworks for Analyzing Whole-Brain Network Data

  • Protocol
  • First Online:
Biomedical Engineering Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2393))

  • 2285 Accesses

Abstract

Brain network analyses have exploded in recent years and hold great potential in helping us understand normal and abnormal brain function. Network science approaches have facilitated these analyses and our understanding of how the brain is structurally and functionally organized. However, the development of statistical methods that allow relating this organization to health outcomes has lagged behind. We have attempted to address this need by developing mixed modeling frameworks that allow relating system-level properties of brain networks to outcomes of interest. These frameworks serve as a synergistic fusion of multivariate statistical approaches with network science, providing a needed analytic (modeling and inferential) foundation for whole-brain network data. In this chapter we delineate these approaches that have been developed for single-task and multitask (longitudinal) brain network data, illustrate their utility with data applications, detail their implementation with a user-friendly Matlab toolbox, and discuss ongoing work to adapt the methods to (within-task) dynamic network analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simpson SL, Bowman FD, Laurienti PJ (2013) Analyzing complex functional brain networks: fusing statistics and network science to understand the brain. Stat Surv 7:1–36

    Article  PubMed  PubMed Central  Google Scholar 

  2. Simpson SL, Laurienti PJ (2016) Disentangling brain graphs: a note on the conflation of network and connectivity analyses. Brain Connect 6(2):95–98

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sporns O (2010) Networks of the brain. The MIT Press, Cambridge

    Book  Google Scholar 

  4. Sporns O (2018) Graph theory methods: applications in brain networks. Dialog Clin Neurosci 20(2):111

    Article  Google Scholar 

  5. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186

    Article  CAS  PubMed  Google Scholar 

  6. Simpson SL, Burdette JH, Laurienti PJ (2015) The brain science interface. Significance 12(4):34–39

    Article  PubMed  Google Scholar 

  7. Telesford QK, Simpson SL, Burdette JH, Hayasaka S, Laurienti PJ (2011) The brain as a complex system: using network science as a tool for understanding the brain. Brain Connect 1(4):295–308

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bassett DS, Bullmore ET (2009) Human brain networks in health and disease. Curr Opin Neurol 22(4):340

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cao M, Wang JH, Dai ZJ, Cao XY, Jiang LL, Fan FM, et al (2014) Topological organization of the human brain functional connectome across the lifespan. Develop Cognit Neurosci 7:76–93

    Article  Google Scholar 

  10. Simpson SL, Laurienti PJ (2015) A two-part mixed-effects modeling framework for analyzing whole-brain network data. NeuroImage 113:310–319

    Article  PubMed  Google Scholar 

  11. Simpson SL, Hayasaka S, Laurienti PJ (2011) Exponential random graph modeling for complex brain networks. PLoS One 6(5):e20039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Simpson SL, Moussa MN, Laurienti PJ (2012) An exponential random graph modeling approach to creating group-based representative whole-brain connectivity networks. Neuroimage 60(2):1117–1126

    Article  PubMed  Google Scholar 

  13. Solo V, Poline JB, Lindquist MA, Simpson SL, Bowman FD, Chung MK, Cassidy B (2018). Connectivity in fMRI: blind spots and breakthroughs. IEEE Trans Med Imag 37(7), 1537–1550

    Article  Google Scholar 

  14. Handcock MS (2003) Statistical models for social networks: inference and degeneracy. In: Breiger R, Carley K, Pattison PE (eds) Dynamic social network modelling and analysis: workshop summary and papers. National Academy Press, Washington, DC, pp 229–240

    Google Scholar 

  15. Rinaldo, A., Fienberg SE, Zhou Y (2009) On the geometry of discrete exponential families with application to exponential random graph models Electron J Stat 3:446–484

    Google Scholar 

  16. O’Malley AJ (2013) The analysis of social network data: an exciting frontier for statisticians. Stat Med 32(4):539–555

    Article  PubMed  Google Scholar 

  17. Shehzad Z, Kelly C, Reiss PT, Cameron Craddock R, Emerson JW, McMahon K, et al (2014) A multivariate distance-based analytic framework for connectome-wide association studies. NeuroImage 93:74–94

    Article  PubMed  Google Scholar 

  18. Simpson SL, Lyday RG, Hayasaka S, Marsh AP, Laurienti PJ (2013) A permutation testing framework to compare groups of brain networks. Front Comput Neurosci 7:171

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bahrami M, Laurienti PJ, Quandt SA, Talton J, Pope CN, Summers P, Burdette JH, Chen H, Liu J, Howard TD, Arcury TA, Simpson SL (2017) The impacts of pesticide and nicotine exposures on functional brain networks in Latino immigrant workers. NeuroToxicology 62:138–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bahrami M, Laurienti PJ, Simpson SL (2019) A Matlab toolbox for multivariate analysis of brain networks. Hum Brain Mapp 40(1):175–186

    Article  PubMed  Google Scholar 

  21. Simpson, S. L., Bahrami M, Laurienti PJ (2019) A mixed-modeling framework for analyzing multitask whole-brain network data. Network Neurosci 3(2):307–324

    Article  Google Scholar 

  22. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15:273–289

    Article  CAS  PubMed  Google Scholar 

  23. Arcury, T. A., Nguyen HT, Summers P, Talton JW, Holbrook LC, Walker FO, …, Quandt SA (2014) Lifetime and current pesticide exposure among Latino farmworkers in comparison to other Latino immigrants. Am J Ind Med 57(7):776–787

    Google Scholar 

  24. Laurienti PJ, Burdette JH, Talton J, Pope CN, Summers P, Walker FO, …Arcury TA (2016) Brain anatomy in Latino farmworkers exposed to pesticides and nicotine. J Occup Environ Med 58(5):436

    Google Scholar 

  25. Schultz DH, Cole MW (2016) Integrated brain network architecture supports cognitive task performance. Neuron 92(2):278–279

    Article  CAS  PubMed  Google Scholar 

  26. Lebedev AV, Westman E., Simmons A, Lebedeva A, Siepel FJ, Pereira JB, Aarsland D (2014) Large-scale resting state network correlates of cognitive impairment in Parkinson’s disease and related dopaminergic deficits. Front Syst Neurosci 8:45

    Article  PubMed  PubMed Central  Google Scholar 

  27. Baggio HC, Sala-Llonch R, Segura B, Marti MJ, Valldeoriola F, Compta Y, …Junqué C (2014) Functional brain networks and cognitive deficits in Parkinson’s disease. Hum Brain Mapp 35(9):4620–4634

    Google Scholar 

  28. Gamboa OL, Tagliazucchi E, von Wegner F, Jurcoane A, Wahl M, Laufs H, Ziemann U (2014). Working memory performance of early MS patients correlates inversely with modularity increases in resting state functional connectivity networks. Neuroimage 94:385–395

    Article  CAS  PubMed  Google Scholar 

  29. Hugenschmidt CE, Mozolic JL, Tan H, Kraft RA, Laurienti PJ (2009) Age-related increase in cross-sensory noise in resting and steady-state cerebral perfusion. Brain Topogr 21(3–4):241–251

    Article  PubMed  PubMed Central  Google Scholar 

  30. Moussa MN, Vechlekar CD, Burdette JH, Steen MR, Hugenschmidt CE, Laurienti PJ (2011) Changes in cognitive state alter human functional brain networks. Front Hum Neurosci 5:103–113

    Article  Google Scholar 

  31. Hunter DR, Goodreau SM, Handcock MS (2008) Goodness of fit of social network models. J Am Stat Assoc 103(481):248–258

    Article  CAS  Google Scholar 

  32. Van Den Heuvel, MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31(44):15775–15786

    Article  PubMed  PubMed Central  Google Scholar 

  33. Edwards LJ (2000). Modern statistical techniques for the analysis of longitudinal data in biomedical research. Pediatr Pulmonol 30(4):330–344

    Article  CAS  PubMed  Google Scholar 

  34. Ginestet CE, Fournel AP, Simmons A (2014) Statistical network analysis for functional MRI: mean networks and group comparisons. Front Comput Neurosci 8:51

    Article  PubMed  PubMed Central  Google Scholar 

  35. Albert PS, Shen J (2005) Modelling longitudinal semicontinuous emesis volume data with serial correlation in an acupuncture clinical trial. J R Stat Soc Ser C (Appl Stat) 54(4):707–720

    Article  Google Scholar 

  36. Liu L, Ma JZ, Johnson BA (2008) A multi-level two-part random effects model, with application to an alcohol-dependence study. Stat Med 27(18):3528–3539

    Article  PubMed  Google Scholar 

  37. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52:1059–1069

    Article  PubMed  Google Scholar 

  38. Friedman EJ, Landsberg AS, Owen JP, Li YO, Mukherjee P (2014) Stochastic geometric network models for groups of functional and structural connectomes. NeuroImage 101:473–484

    Article  PubMed  Google Scholar 

  39. Wolfinger R, O’connell M (1993). Generalized linear mixed models a pseudo-likelihood approach. J Stat Comput Simul 48(3–4):233–243

    Article  Google Scholar 

  40. Bahrami M, Laurienti PJ, Simpson SL (2019) Analysis of brain subnetworks within the context of their whole-brain networks. Hum Brain Mapp 40(17):5123–5141

    Article  PubMed  PubMed Central  Google Scholar 

  41. McIntosh AR (2000) Towards a network theory of cognition. Neural Netw 13(8–9):861–870

    Article  CAS  PubMed  Google Scholar 

  42. Menon V (2011) Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cognit Sci 15(10):483–506

    Article  Google Scholar 

  43. Mokhtari F, Akhlaghi MI, Simpson SL, Wu G, Laurienti PJ (2019). Sliding window correlation analysis: modulating window shape for dynamic brain connectivity in resting state. NeuroImage 189:655–666

    Article  PubMed  Google Scholar 

  44. Laurienti PJ, Bahrami M, Lyday RG, Casanova R, Burdette JH, Simpson, SL (2019) Using low-dimensional manifolds to map relationships between dynamic brain networks. Front Hum Neurosci 13:430

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chang, C., Keilholz S, Miller R, Woolrich M (2018) Mapping and interpreting the dynamic connectivity of the brain. NeuroImage 180(PB):335–336

    Google Scholar 

  46. Petersen SE, Sporns O (2015) Brain networks and cognitive architectures. Neuron 88(1):207–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Park HJ, Friston K (2013) Structural and functional brain networks: from connections to cognition. Science 342(6158):1238411

    Article  PubMed  Google Scholar 

  48. Bassett DS, Wymbs NF, Porter MA, Mucha PJ, Carlson JM, Grafton ST (2011) Dynamic reconfiguration of human brain networks during learning. Proc Natl Acad Sci 108(18):7641–7646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rashid B, Arbabshirani MR, Damaraju E, Cetin MS, Miller R, Pearlson GD, Calhoun VD (2016) Classification of schizophrenia and bipolar patients using static and dynamic resting-state fMRI brain connectivity. Neuroimage 134:645–657

    Article  PubMed  Google Scholar 

  50. Zhang J, Cheng W, Liu Z, Zhang K, Lei X, Yao Y, …, Feng J (2016) Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders. Brain 139(8):2307–2321

    Google Scholar 

  51. Barttfeld P, Uhrig L, Sitt JD, Sigman M, Jarraya B, Dehaene S (2015) Signature of consciousness in the dynamics of resting-state brain activity. Proc Natl Acad Sci 112(3):887–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Godwin, D., Barry RL, Marois R (2015) Breakdown of the brain’s functional network modularity with awareness. Proc Natl Acad Sci 112(12):3799–3804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Medaglia JD, Lynall ME, Bassett DS (2015). Cognitive network neuroscience. J Cognit Neurosci 27(8):1471–1491

    Article  Google Scholar 

  54. Hutchison RM, Womelsdorf T, Allen EA, Bandettini PA, Calhoun VD, Corbetta M, …, Handwerker DA (2013) Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80:360–378

    Google Scholar 

  55. Shine JM, Bissett PG, Bell PT, Koyejo O, Balsters JH, Gorgolewski KJ, …, Poldrack RA (2016) The dynamics of functional brain networks: integrated network states during cognitive task performance. Neuron 92(2):544–554

    Google Scholar 

  56. Fukushima M, Betzel RF, He Y, de Reus MA, van den Heuvel MP, Zuo XN, Sporns O (2018) Fluctuations between high-and low-modularity topology in time-resolved functional connectivity. NeuroImage 180:406–416

    Article  PubMed  Google Scholar 

  57. Sizemore AE, Bassett DS (2018) Dynamic graph metrics: tutorial, toolbox, and tale. NeuroImage 180:417–427

    Article  PubMed  Google Scholar 

  58. Elton A, Gao W (2015). Task-related modulation of functional connectivity variability and its behavioral correlations. Hum Brain Mapp 36(8):3260–3272

    Article  PubMed  PubMed Central  Google Scholar 

  59. Edwards LJ, Simpson SL (2014) An analysis of 24-hour ambulatory blood pressure monitoring data using orthonormal polynomials in the linear mixed model. Blood Pressure Monit 19(3):153

    Article  Google Scholar 

  60. Simpson SL, Edwards LJ (2013) A circular LEAR correlation structure for cyclical longitudinal data. Stat Methods Med Res 22(3):296–306

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute of Biomedical Imaging and Bioengineering R01EB024559, and Wake Forest Clinical and Translational Science Institute (WF CTSI) NCATS UL1TR001420.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean L. Simpson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Simpson, S.L. (2022). Mixed Modeling Frameworks for Analyzing Whole-Brain Network Data. In: Ossandon, M.R., Baker, H., Rasooly, A. (eds) Biomedical Engineering Technologies. Methods in Molecular Biology, vol 2393. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1803-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1803-5_30

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1802-8

  • Online ISBN: 978-1-0716-1803-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics