Skip to main content

Evaluation of Tumor Development Using Hemoglobin Saturation Profile on Rodent Dorsal Window Chamber

  • Protocol
  • First Online:
Biomedical Engineering Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2393))

  • 2343 Accesses

Abstract

Tumor development can be indirectly evaluated using features of the tumor microenvironment (TME), such as hemoglobin saturation (HbSat), blood vessel dilation, and formation of new vessels. High values of HbSat and other features of the TME could indicate high metabolic activity and could precede the formation of angiogenic tumors; therefore, changes in HbSat profile can be used as a biomarker for tumor progression. One methodology to evaluate HbSat profile over time, and correlate it with tumor development in vivo in a preclinical model, is through a dorsal skin-fold window chamber. In this chapter, we provide a detailed description of this methodology to evaluate hemoglobin saturation profile and to predict tumor development. We will cover the surgical preparation of the mouse, the installation/maintenance of the dorsal window chamber, and the imaging processing and evaluation to the HbSat profile to predict new development of new tumor areas over time. We included, in this chapter, step by step examples of the imaging processing method to obtain pixel level HbSat values from raw pixels data, the computational method to determine the HbSat profile, and the steps for the classification of the areas into tumor and no-tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lücker A et al (2018) The relation between capillary transit times and hemoglobin saturation heterogeneity. Part 2: capillary networks. Front Physiol 9:1296

    Article  Google Scholar 

  2. Hadjistassou C, Moyle K, Ventikos Y (2016) Reproducing the hemoglobin saturation profile, a marker of the blood oxygenation level dependent (BOLD) fMRI effect, at the microscopic level. PLoS One 11(3):e0149935

    Article  Google Scholar 

  3. Carpenter CM et al (2007) Image-guided optical spectroscopy provides molecular-specific information in vivo: MRI-guided spectroscopy of breast cancer hemoglobin, water, and scatterer size. Opt Lett 32(8):933–935

    Article  Google Scholar 

  4. Cheng X et al (2003) Breast cancer detection by mapping hemoglobin concentration and oxygen saturation. Appl Opt 42(31):6412–6421

    Article  CAS  Google Scholar 

  5. Moy AJ et al (2011) Wide-field functional imaging of blood flow and hemoglobin oxygen saturation in the rodent dorsal window chamber. Microvasc Res 82(3):199–209

    Article  Google Scholar 

  6. Brooksby B et al (2006) Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography. Proc Natl Acad Sci U S A 103(23):8828–8833

    Article  CAS  Google Scholar 

  7. Palmer GM et al (2006) Monte Carlo-based inverse model for calculating tissue optical properties. Part II: application to breast cancer diagnosis. Appl Opt 45(5):1072–1078

    Article  CAS  Google Scholar 

  8. Chance B et al (2005) Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study. Acad Radiol 12(8):925–933

    Article  Google Scholar 

  9. Sorg BS et al (2005) Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development. J Biomed Opt 10(4):44004

    Article  Google Scholar 

  10. Anderson PG et al (2016) Optical mammography: bilateral breast symmetry in hemoglobin saturation maps. J Biomed Opt 21(10):101403

    Article  Google Scholar 

  11. Anderson PG et al (2015) Broadband optical mammography: chromophore concentration and hemoglobin saturation contrast in breast cancer. PLoS One 10(3):e0117322

    Article  Google Scholar 

  12. Heu F et al (2013) Effect of low-level laser therapy on blood flow and oxygen- hemoglobin saturation of the foot skin in healthy subjects: a pilot study. Laser Ther 22(1):21–30

    Article  Google Scholar 

  13. Aliano KA, Stavrides S, Davenport T (2013) The use of hemoglobin saturation ratio as a means of measuring tissue perfusion in the development of heel pressure sores. Surg Technol Int 23:69–71

    PubMed  Google Scholar 

  14. Moeller BJ et al (2004) Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 5(5):429–441

    Article  CAS  Google Scholar 

  15. Ossandon MR et al (2014) Forecasting new development of tumor areas using spatial and temporal distribution profiles of hemoglobin saturation in a mouse model. J Med Imaging 1(1):014503

    Article  Google Scholar 

  16. Malinauskas RA (1997) Plasma hemoglobin measurement techniques for the in vitro evaluation of blood damage caused by medical devices. Artif Organs 21(12):1255–1267

    Article  CAS  Google Scholar 

  17. Kahn SE, Watkins BF, Bermes EW Jr (1981) An evaluation of a spectrophotometric scanning technique for measurement of plasma hemoglobin. Ann Clin Lab Sci 11(2):126–131

    CAS  PubMed  Google Scholar 

  18. Shotton D (1993) An introduction to digital image processing and image display in electronic light microscopy. In: Shotton D (ed) Electronic light microscopy—techniques in modern biomedical microscopy. Wiley-Liss, New York, pp 39–70

    Google Scholar 

  19. Shonat RD et al (1997) Near-simultaneous hemoglobin saturation and oxygen tension maps in mouse brain using an AOTF microscope. Biophys J 73:1223–1231

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The data used in the examples is collected in the laboratory of Mark W. Dewhirst (Duke University, Durham, North Carolina). The authors are grateful for the permission to repurpose the data for use in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel R. Ossandon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ossandon, M.R., Sorg, B.S., Phatak, D.S., Kalpakis, K. (2022). Evaluation of Tumor Development Using Hemoglobin Saturation Profile on Rodent Dorsal Window Chamber. In: Ossandon, M.R., Baker, H., Rasooly, A. (eds) Biomedical Engineering Technologies. Methods in Molecular Biology, vol 2393. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1803-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1803-5_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1802-8

  • Online ISBN: 978-1-0716-1803-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics