Skip to main content

Opportunities and Considerations in the Application of Artificial Intelligence to Pharmacokinetic Prediction

  • Protocol
  • First Online:
Artificial Intelligence in Drug Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2390))

Abstract

The improvement in the ability of the pharmaceutical industry to predict human pharmacokinetic behavior are attributable to major technological shifts from 1990 to the present day. The opportunity for the application of AI/ML based approaches in the pharmaceutical industry is driven by the abundance of data sets that exist within individual pharmaceutical and biotech companies and the availability, within these environments, of abundant computing power. This chapter seeks to describe opportunities for artificial intelligence to contribute to the assessment and evaluation of the dug metabolism and pharmacokinetic (DMPK) properties of novel compounds across the drug discovery and development continuum. Many initiatives are already underway with respect to the application of AI/ML in predicting pharmacokinetic profiles so the question is not whether AI will influence pharmacokinetic prediction but rather how to best utilize and incorporate this and how to evaluate the value added from these applications. Since our understanding of the underlying biology of the in vitro and in vivo systems with respect to ADME, one of the key challenges to AI-based methods will be the ability to adapt to data sets that change in quality over time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bunnage M (2011) Getting pharmaceutical R&D back on target. Nat Chem Biol 7:335–339

    Article  CAS  Google Scholar 

  2. Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J (2014) Clinical development success rates for investigational drugs. Nat Biotechol 32:40–51

    Article  CAS  Google Scholar 

  3. Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3:711–716

    Article  CAS  Google Scholar 

  4. Wills TJ, Lipkus AH (2020) Structural approach to assessing the innovativeness of new drugs finds accelerating rate of innovation. Med Chem Lett 11(11):2114–2119. https://doi.org/10.1021/acsmedchemlett.0c00319

    Article  CAS  Google Scholar 

  5. Waring MJ, Arrowsmith J, Leach AR, Leeson PD, Mandrell S, Owen RM, Pairaudeau G, Pennie WD, Pickett SD, Wang J, Wallace O, Weir A (2015) An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov 14:475–486

    Article  CAS  Google Scholar 

  6. Cook D, Brown D, Alexander R, March R, Morgan P, Satterwhite G, Pangalos MN (2014) Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-dimensional framework. Nat Rev Drug Discov 13:419–431

    Article  CAS  Google Scholar 

  7. Morgan P, Brown DG, Lennard S, Anderton MJ, Barrett JC, Eriksson U, Fidcok M, Hamren B, Johnson A, March RE, Matcham J, Mettetal J, Nicholls DJ, Platz S, Rees S, Snowden MA, Pangalos MN (2018) Impact of a five-dimensional framework on R&D productivity at AstraZeneca. Nat Rev Drug Discov 17:167–181

    Article  CAS  Google Scholar 

  8. Dowden H, Munro J (2019) Trends in clinical success rates and therapeutic focus. Nat Rev Drug Discov 18:495–496

    Article  CAS  Google Scholar 

  9. Wu SS, Fernando K, Allerton C, Jansen KU, Vincent MS, Dolsten M (2020) Reviving an R&D pipeline: a step change in the phase II success rate. Drug Discov Today 26:308–314. https://doi.org/10.1016/j.drudis.2020.10.019

    Article  PubMed  Google Scholar 

  10. Jain L, Mehrotra N, Wenning L, Sinha V (2019) PDUFA VI: it is time to unleash the full potential of model-informed drug development. CPT Pharmacometr Syst Pharmacol 8:5–8

    Article  CAS  Google Scholar 

  11. Zion Market Research (2019). Biosimulation Market by Product (Software and Services), by Application (Drug Development, Drug Discovery, and Others), and by End-User (Pharmaceutical & Biotechnology Companies, Contract Research Organizations, Regulatory Authorities, and Academic Research Institutions): Global Industry Perspective, Comprehensive Analysis, and Forecast, 2018–2025

    Google Scholar 

  12. Kim TH, Shin S, Shin BS (2018) Model-based drug development: application of modeling and simulation in drug development. J Pharm Investig 48:431–441

    Article  CAS  Google Scholar 

  13. Mistry HB, Orrell D (2020) Small models for big data. Clin Phar Ther 107(4):710–711

    Article  Google Scholar 

  14. Talevi A, Morales JF, Hather G, Podichetty JT, Kim S, Bloomingdale PC, Kim S, Burton J, Brown JD, Winterstein AG, Schmidt S, White JK, Conrado DJ (2020) Machine learning in drug discovery and development part 1: a primer. CPT Pharmacometrics Syst Pharmacol 9:129–142

    Article  CAS  Google Scholar 

  15. Liu Q, Zhu H, Liu C, Jean D, Huang S-M, El Zarrad MK, Blumenthal G, Wang Y (2020) Application of machine learning in drug development and regulation: current status and future potential. Clin Phar Ther 107(4):726–729

    Article  Google Scholar 

  16. Segall MD, Leeding C (2018) Discovery decisions - collaborating in data management. European Biopharm Rev 66–69

    Google Scholar 

  17. Winiwarter S, Chang G, Desai P, Menzel K, Faller B, Arimoto R, Keefer C, Brocatelli F (2019) Prediction of fraction unbound in microsomal and hepatocyte incubations: a comparison of methods across industry datasets. Mol Pharm 16:4077–4085

    Article  CAS  Google Scholar 

  18. Ursu O, Rayan A, Goldblum A, Oprea TI (2011) Understanding drug-likeness. WIREs Comput Mol Sci 1:760–781

    Article  CAS  Google Scholar 

  19. Jones HM, Rowland-Yeo K (2013) Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT Pharmacometr Syst Pharmacol 2(8):e63. https://doi.org/10.1038/psp.2013.41

    Article  CAS  Google Scholar 

  20. Box GEP (1976) Science and statistics. J Am Stat Assoc 71:791–799

    Article  Google Scholar 

  21. Badillo S, , Banfai B , Birzele F , Davydov II , Hutchinson L, Kam-Thong T, Siebourg-Polster J , Steiert B and Zhang JD. An introduction to machine learning. Clin Phar Ther 107(4), 883–885 (2020)

    Google Scholar 

  22. Korolev D, Balakin KV, Nikolsky Y, Kirillov E, Ivanenkov YA, Savchuk NP, Ivashchenko AA, Nikolskaya T (2003) Modeling of human cytochrome P450-mediated drug metabolism using unsupervised machine learning approach. J Med Chem 46:3631–3643

    Article  CAS  Google Scholar 

  23. Krüger A, Maltarollo VG, Wrenger C and Kronenberger T. (2019). ADME profiling in drug discovery and a new path paved on silica, Drug Discovery and Development - New Advances, Vishwanath Gaitonde, Partha Karmakar and Ashit Trivedi, IntechOpen. https://doi.org/10.5772/intechopen.86174. https://www.intechopen.com/books/drug-discovery-and-development-new-advances/adme-profiling-in-drug-discovery-and-a-new-path-paved-on-silica

  24. Lowe EW, Butkiewicz M, White Z, Spellings M, Omlor A, and Meiler J. (2011) Comparative analysis of machine learning techniques for the prediction of the DMPK parameters intrinsic clearance and plasma protein binding. 4th international conference on bioinformatics and computational biology. Las Vegas, NV. December 2011

    Google Scholar 

  25. Palmer DS, O’Boyle NM, Glen RC, Mitchell JBO (2007) Random Forest models to predict aqueous solubility. J Chem Inf Model 47:150–158

    Article  CAS  Google Scholar 

  26. Wang Y-H, Li Y, Yang S-L, Yang L (2005) Classification of substrates and inhibitors of P-glycoprotein using unsupervised machine learning approach. J Chem Inf Model 45:750–757

    Article  CAS  Google Scholar 

  27. Irwin BWJ, Levell J, Whitehead TM, Segall MD, Conduit GJ (2020) Practical applications of deep learning to impute heterogeneous drug discovery data. J Chem Inf Model 60(6):2848–2857

    Article  CAS  Google Scholar 

  28. Peters SA (2012) Generic whole-body physiologically-based pharmacokinetic modeling. In: Physiologically-based pharmacokinetic (PBPK) modeling and simulations. John Wiley and Sons, Hoboken, New Jersey, pp 153–160

    Chapter  Google Scholar 

  29. Segall M, Whitehead T, Greene N and Norman J (2020). Predicting Pharmacokinetic Parameters and Curves Thursday. https://www.optibrium.com/community/videos/presentations-webinars/494-predictpkparameters 12 November 2020 09:34 - Last Updated Thursday, 12 November 2020 10:04

  30. Aliagas I, Gobbi A, Heffron T, Lee M-L, Ortwine DF, Zak M, Khojasteh SC (2015) A probabilistic method to report predictions from a human liver microsomes stability QSAR model: a practical tool for drug discovery. J Comput Aided Mol Des 29:327–338

    Article  CAS  Google Scholar 

  31. Dahlgren D, Lennernäs H (2019) Intestinal permeability and drug absorption: predictive experimental, computational and in vivo approaches. Pharmaceutics 11:411–429

    Article  CAS  Google Scholar 

  32. Lu AHY, West SB, Ryan D, Levin W (1973) Characterization of partially purified cytochromes P-450 and P448 from rat liver microsomes. Drug Metab Dispos 1(1):29–39

    CAS  PubMed  Google Scholar 

  33. Lu AHY, Coon MJ (1968) Role of hemoprotein P-450 in fatty acid ω-hydroxylation in a soluble enzyme system from liver microsomes. J Biol Chem 25:1331–1332

    Article  Google Scholar 

  34. Pang KS, Rowland M (1977) Hepatic clearance of drugs. I. Theoretical considerations of a "well-stirred" model and a "parallel tube" model. Influence of hepatic blood flow, plasma and blood cell binding, and the hepatocellular enzymatic activity on hepatic drug clearance. J Pharmacokinet Biopharm 5(6):625–653

    Article  CAS  Google Scholar 

  35. Rane A, Wilkinson GR, Shand DG (1977) Prediction of hepatic extraction ratio from in vitro measurement of intrinsic clearance. J Pharmacol Exp Ther 200(2):420–424

    CAS  PubMed  Google Scholar 

  36. Rowland M, Benet LZ, Graham GG (1973) Clearance concepts in pharmacokinetics. J Pharmacokinet Biopharm 1(2):123–136

    Article  CAS  Google Scholar 

  37. Obach RS (1999) Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro half-life approach and nonspecific binding to microsomes. Drug Metab Dispos 27(11):1350–1359

    CAS  PubMed  Google Scholar 

  38. Wood FL, Houston JB, Hallifax D (2017) Clearance prediction methodology needs fundamental improvement: trends common to rat and human hepatocytes/microsomes and implications for experimental methodology. Drug Metab Dispos 45:1178–1188

    Article  CAS  Google Scholar 

  39. Shand DG, Wilkinson GR (1975) A physiological approach to hepatic drug clearance. Clin Pharm Ther 18(4):377–390

    Article  Google Scholar 

  40. Obach RS, Baxter JG, Liston TE, Silber BM, Jones BC, MacIntyre F, Rance DJ, Wastall P (1997) The prediction of human pharmacokinetic parameters from preclinical and in vitro data. J Pharmacol Exp Ther 283(1):46–58

    CAS  PubMed  Google Scholar 

  41. Bjornsson TD, Callaghan JT, Einolf HJ, Fischer V, Gan L, Grimm S, Kao J, King SP, Miwa G, Ni L, Kumar G, McLeod J, Obach RS, Roberts S, Roe A, Shah A, Snikeris F, Sullivan JT, Tweedie D, Vega JM, Walsh J, Wrighton SA (2003) The conduct of in vitro and in vivo drug-drug interaction studies: a pharmaceutical research and manufacturers of America (PhRMA) perspective. Drug Metab Dispos 31(7):815–832

    Article  CAS  Google Scholar 

  42. Hallifax D, Houston JB (2006) Binding of drugs to hepatic microsomes: comment and assessment of current prediction methodology with recommendation for improvement. Drug Metab Dispos 34(4):724–726

    Article  CAS  Google Scholar 

  43. Tucker GT, Houston JB, Huang S-M (2001) Optimizing drug development: strategies to assess drug metabolism/transporter interaction potential—towards a consensus. Br J Clin Pharmacol 52(1):107–117

    Article  CAS  Google Scholar 

  44. Davies B, Morris T (1993) Physiological parameters in laboratory animals and humans. Pharm Res 10:1093–1095

    Article  CAS  Google Scholar 

  45. Peters SA (2008) Evaluation of a generic physiologically based pharmacokinetic model for lineshape analysis. Clin Pharamcokinet 47(4):261–275

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew R. Wright .

Editor information

Editors and Affiliations

Equations

Equations

  1. 1.

    Calculation of intrinsic clearance (Clint) from microsomal half-life (t 1/2 in minutes)

    $$ {\mathrm{Cl}}_{\mathrm{int}}=0.693\times \frac{1}{t_{\frac{1}{2}}}\times \frac{\mathrm{g}\ \mathrm{of}\ \mathrm{liver}\ \mathrm{weight}}{\mathrm{kg}\ \mathrm{body}\ \mathrm{weight}}\times \frac{\mathrm{mL}\ \mathrm{incubation}\ \mathrm{volume}}{\mathrm{mg}\ \mathrm{microsomal}\ \mathrm{protein}}\times \frac{45\ \mathrm{mg}\ \mathrm{microsomal}\ \mathrm{protein}}{\mathrm{g}\ \mathrm{of}\ \mathrm{liver}\ \mathrm{weight}} $$
    (1)
  2. 2.

    The well-stirred model of hepatic clearance. Q is hepatic blood flow, f u is the fraction unbound in blood, Clint as defined in Eq. 1

    $$ {\mathrm{Cl}}_{\mathrm{h}}=\frac{Q\times {f}_{\mathrm{u}}\times {\mathrm{Cl}}_{\mathrm{int}}}{Q+{f}_{\mathrm{u}}\times {\mathrm{Cl}}_{\mathrm{int}}} $$
    (2)
  3. 3.

    The parallel tube model of hepatic clearance. Q is hepatic blood flow, f u is the fraction unbound in blood, Clint as defined in Eq. 1

    $$ {\mathrm{Cl}}_{\mathrm{h}}=Q\times \left(1-{\mathrm{e}}^{\frac{-{\mathrm{Cl}}_{\mathrm{int}}\times {f}_{\mathrm{u}}}{Q}}\right) $$
    (3)
  4. 4.

    Reduced χ 2 statistic. N is the number of observation, Δ the difference between observed and predicted values, and σ 2 the variance of the observation at a specific time-point

    $$ {\chi}^2=\frac{1}{N}\sum \limits_{i=1}^N\left(\frac{\Delta^2}{\sigma_i^2}\right) $$
    (4)
  5. 5.

    Mean-fold error. N is the number of observations

    $$ \mathrm{Mean}\ \mathrm{fold}\ \mathrm{error}={10}^{\left[\frac{1}{n}\sum \left(\log \mathrm{fold}\ \mathrm{error}\right)\right]} $$
    (5)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wright, M.R. (2022). Opportunities and Considerations in the Application of Artificial Intelligence to Pharmacokinetic Prediction. In: Heifetz, A. (eds) Artificial Intelligence in Drug Design. Methods in Molecular Biology, vol 2390. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1787-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1787-8_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1786-1

  • Online ISBN: 978-1-0716-1787-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics