Skip to main content

Artificial Intelligence–Enabled De Novo Design of Novel Compounds that Are Synthesizable

  • Protocol
  • First Online:
Artificial Intelligence in Drug Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2390))

Abstract

Development of computer-aided de novo design methods to discover novel compounds in a speedy manner to treat human diseases has been of interest to drug discovery scientists for the past three decades. In the beginning, the efforts were mostly concentrated to generate molecules that fit the active site of the target protein by sequential building of a molecule atom-by-atom and/or group-by-group while exploring all possible conformations to optimize binding interactions with the target protein. In recent years, deep learning approaches are applied to generate molecules that are iteratively optimized against a binding hypothesis (to optimize potency) and predictive models of drug-likeness (to optimize properties). Synthesizability of molecules generated by these de novo methods remains a challenge. This review will focus on the recent development of synthetic planning methods that are suitable for enhancing synthesizability of molecules designed by de novo methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murcko MA (1997) Recent advances in ligand design methods. Rev Comput Chem 11:1–66

    CAS  Google Scholar 

  2. Clark DE, Murray CW, Li J (1997) Current issues in de novo molecular design. Rev Comput Chem 11:67–125

    CAS  Google Scholar 

  3. Schneider G, Fechner U (2005) Computer-based de novo design of drug-like molecules. Nat Rev Drug Discov 4:649–663

    Article  CAS  Google Scholar 

  4. Stokes JM, Yang K, Swanson K et al (2020) A deep learning approach to antibiotic discovery. Cell 180:688–702

    Article  CAS  Google Scholar 

  5. Zhavoronkov A, Ivanenkov YA, Aliper A et al (2019) Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat Biotechnol 37:1038–1040

    Article  CAS  Google Scholar 

  6. Xu Y, Lin K, Wang S et al (2019) Deep learning for molecular generation. Future Med Chem 11:567–597

    Article  CAS  Google Scholar 

  7. Olivecrona M, Blaschke T, Engkvist O et al (2017) Molecular de-novo design through deep reinforcement learning. J Cheminform 9:48

    Article  Google Scholar 

  8. Gomez-Bombarelli R, Duvenaud D, Hernandez-Lobato JM et al (2018) Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent Sci 4:268–276

    Article  CAS  Google Scholar 

  9. Polykovskiy D, Zhebrak A, Vetrov D et al (2018) Entangled conditional adversarial autoencoder for de novo drug discovery. Mol Pharm 15:4398–4405

    Article  CAS  Google Scholar 

  10. Sanchez-Lengeling B, Outeiral C, Guimaraes GL et al (2017) Optimizing distributions over molecular space. An objective-reinforced generative adversarial network for inverse-design chemistry (ORGANIC). ChemRxiv. https://doi.org/10.26434/chemrxiv.5309668.v3

  11. Brown N, Fiscato M, Segler MHS et al (2019) GuacaMol: benchmarking models for de novo molecular design. J Chem Inf Model 59:1096–1108

    Article  CAS  Google Scholar 

  12. Polykovskiy D, Zhebrak A, Sanchez-Lengeling B et al (2020) Molecular sets (MOSES): a benchmarking platform for molecular generation models. Front Pharmacol 11:565644

    Article  CAS  Google Scholar 

  13. Corey EJ, Wipke WT (1969) Computer-assisted design of complex organic syntheses. Science 166:178–192

    Article  CAS  Google Scholar 

  14. Pensak DA, Corey EJ (1977) LHASA—logic and heuristics applied to synthetic analysis. In: Computer-Assisted Organic Synthesis, vol 61. American Chemical Society, Washington, pp 1–32

    Chapter  Google Scholar 

  15. Pierce AC, Rao G, Bemis GW (2004) BREED: generating novel inhibitors through hybridization of known ligands. Application to CDK2, p38, and HIV protease. J Med Chem 47:2768–2775

    Article  CAS  Google Scholar 

  16. Ertl P, Schuffenhauer A (2009) Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J Cheminform 1:8

    Article  Google Scholar 

  17. Coley CW, Rogers L, Green WH et al (2018) SCScore: synthetic complexity learned from a reaction corpus. J Chem Inf Model 58:252–261

    Article  CAS  Google Scholar 

  18. Sheridan RP, Zorn N, Sherer EC et al (2014) Modeling a crowdsourced definition of molecular complexity. J Chem Inf Model 54:1604–1616

    Article  CAS  Google Scholar 

  19. Thakkar A, Chadimova V, Bjerrum EJ et al (2021) Retrosynthetic accessibility score (RAscore) – rapid machine learned synthesizability classification from AI driven retrosynthetic planning. Chem Sci 12:3339–3349. https://doi.org/10.1039/d0sc05401a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Genheden S, Thakkar A, Chadimová V et al (2020) AiZynthFinder: a fast, robust and flexible open-source software for retrosynthetic planning. J Cheminform 12:70

    Article  Google Scholar 

  21. Gao W, Coley CW (2020) The synthesizability of molecules proposed by generative models. J Chem Inf Model 60:5714–5723

    Article  CAS  Google Scholar 

  22. Kusner MJ, Paige B, Hernandez-Lobato JM (2017) Grammar variational autoencoder. arXiv:1703.01925v1

    Google Scholar 

  23. Jin W, Barzilay R, Jaakkola T (2018) Junction tree variational autoencoder for molecular graph generation. arXiv:1802.04364

    Google Scholar 

  24. Zhou Z, Kearnes S, Li L et al (2019) Optimization of molecules via deep reinforcement learning. Sci Rep 9:10752

    Article  Google Scholar 

  25. Maziarka Ł, Pocha A, Kaczmarczyk J et al (2020) Mol-CycleGAN: a generative model for molecular optimization. J Cheminform 12:2

    Article  CAS  Google Scholar 

  26. Li Y, Zhang L, Liu Z (2018) Multi-objective de novo drug design with conditional graph generative model. J Cheminform 10:33

    Article  Google Scholar 

  27. Khemchandani Y, O’Hagan S, Samanta S et al (2020) DeepGraphMolGen, a multi-objective, computational strategy for generating molecules with desirable properties: a graph convolution and reinforcement learning approach. J Cheminform 12:53

    Article  CAS  Google Scholar 

  28. Horwood J, Noutahi E (2020) Molecular design in synthetically accessible chemical space via deep reinforcement learning. ACS Omega 5:32984–32994

    Article  CAS  Google Scholar 

  29. Gottipati SK, Sattarov B, Niu S et al (2020) Learning to navigate the synthetically accessible chemical space using reinforcement learning. arXiv:2004.12485

    Google Scholar 

  30. Bradshaw J, Paige B, Kusner MJ et al (2019) Model to search for synthesizable molecules arXiv: 1906.05221

    Google Scholar 

  31. Korovina K, Xu S, Kandasamy K et al (2019) ChemBO: Bayesian optimization of small organic molecules with synthesizable recommendations arXiv: 1908.01425

    Google Scholar 

  32. Coley CW, Jin W, Rogers L et al (2019) A graph-convolutional neural network model for the prediction of chemical reactivity. Chem Sci 10:370–377

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Govinda Bhisetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bhisetti, G., Fang, C. (2022). Artificial Intelligence–Enabled De Novo Design of Novel Compounds that Are Synthesizable. In: Heifetz, A. (eds) Artificial Intelligence in Drug Design. Methods in Molecular Biology, vol 2390. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1787-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1787-8_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1786-1

  • Online ISBN: 978-1-0716-1787-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics