Skip to main content

Genetic Analysis of iNKT Cell Development and Function

  • Protocol
  • First Online:
Invariant Natural Killer T-Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2388))

Abstract

Natural killer T (NKT) cells are among the immediate and early responding immune cells and are important players in autoimmune diseases and tumor immunity. This unique subset of T cells shares properties of natural killer cells and T cells. Proper identification and characterization of NKT cell subsets is essential to understand the function and involvement of these understudied immune cells in various diseases. This review aims to summarize the known methods for identifying and characterizing NKT cells. NKT cells are divided into Type I (or invariant) and Type II, with either limited or broad TCR repertoires, respectively, that generally respond to glycolipids presented on the nonclassical MHC, CD1d. Type I NKT cells or invariant NKT cells (iNKT) are the most well studied and can be further subdivided into NKT1, NKT2, or NKT17 populations, classified based on their functional capacity. Conversely, less is known about Type II NKT cells because they have a more diverse TCR repertoire which make them hard to identify. However, genetic analyses have shed light on the development and function of all NKT subsets, which aids in their characterization. Further exploration of the role of NKT cells in various diseases will reveal the intricacies and importance of their novel functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Godfrey D, Hammond K, Poulton L, Smyth M, Baxter A (2000) NKT cells: facts, functions and fallacies. Immunol Today 21:573–583

    Article  CAS  PubMed  Google Scholar 

  2. Berzins S, Uldrich A, Pellicci D, McNab F, Kayakawa Y, Smyth M, Godfrey D (2004) Parallels and distinctions between T and NKT cell development in the thymus. Immunol Cell Biol 82:269–275

    Article  PubMed  Google Scholar 

  3. Emoto M, Kaufmann S (2003) Liver NKT cells: an account of heterogeneity. Trends Immunol 24:364–369

    Article  CAS  PubMed  Google Scholar 

  4. Zhou D, Mattner J, Cantu C 3rd, Schrantz N, Yin N, Gao Y, Sagiv Y, Hudspeth K, Wu Y et al (2004) Lysosomal glycosphingolipid recognition by NKT cells. Science 306:1786–1789

    Article  CAS  PubMed  Google Scholar 

  5. Hansen D, Schofield L (2004) Regulation of immunity and pathogenesis in infectious diseases by CD1d-restricted NKT cells. Int J Parasitol 34(1):15–25

    Article  CAS  PubMed  Google Scholar 

  6. Crowe N, Uldrich A, Kyparissoudis K, Hammond K, Hayakawa Y, Sidobre S, Keating R, Kronenberg M, Smyth M, Godfrey D (2003) Glycolipid antigen drives rapid expansion and sustained cytokine production by NK T cells. J Immunol 171(8):4020–4027

    Article  CAS  PubMed  Google Scholar 

  7. Gadue P, Stein P (2002) NK T cell precursors exhibit differential cytokine regulation and require Itk for efficient maturation. J Immunol 169:2397–2406

    Article  CAS  PubMed  Google Scholar 

  8. Stenstrom M, Skold M, Ericsson A, Beaudoin L, Sidobre S, Kronenberg M, Leheren A, Cardell S (2004) Surface receptors identify mouse NK1.1+ T cell subsets distinguished by function and T cell receptor type. Eur J Immunol 34:56–65

    Article  PubMed  CAS  Google Scholar 

  9. Gumperz J, Miyake S, Yamamura T, Brenner M (2002) Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J Exp Med 195:625–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pellicci D, Hammond K, Uldrich A, Baxter A, Smyth M, Godfrey D (2002) A natural killer T (NKT) cell developmental pathway iInvolving a thymus-dependent NK1.1(−)CD4(+) CD1d-dependent precursor stage. J Exp Med 195:835–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Godfrey D, Stankovic S, Baxter A (2010) Raising the NKT cell family. Nat Immunol 11:197–206

    Article  CAS  PubMed  Google Scholar 

  12. Cui J, Shin T, Kawano T, Sato H, Kondo E, Toura I, Kaneko Y, Koseki H, Kanno M, Taniguchi M (1997) Requirement for Valpha14 NKT cells in IL-12-mediated rejection of tumors. Science 278:1623–1626

    Article  CAS  PubMed  Google Scholar 

  13. Jordan M, Fletcher J, Baxter A (2004) Genetic control of NKT cell numbers. Immunol Cell Biol 82:276–284

    Article  CAS  PubMed  Google Scholar 

  14. Griewank K, Borowski C, Rietdijk S, Wang N, Julien A, Wei D, Mamchak A, Terhorst C, Bendelac A (2007) Homotypic interactions mediated by Slamf1 and Slamf6 receptors control NKT cell lineage development. Immunity 27:751–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. D’Cruz LM, Stradner MH, Yang CY, Goldrath AW (2014) E and Id proteins influence invariant NKT cell sublineage differentiation and proliferation. J Immunol 192(5):2227–2236

    Article  PubMed  CAS  Google Scholar 

  16. Verykokakis M, Krishnamoorthy V, Iavarone A, Lasorella A, Sigvardsson M, Kee BL (2013) Essential functions for ID proteins at multiple checkpoints in invariant NKT cell development. J Immunol 191(12):5973–5983

    Article  CAS  PubMed  Google Scholar 

  17. Thapa P, Das J, McWilliams D, Shapiro M, Sundsbak R, Nelson-Holte M, Tangen S, Anderson J, Desiderio S, Hiebert S, Sant’angelo DB, Shapiro VS (2013) The transcriptional repressor NKAP is required for the development of iNKT cells. Nat Commun 4:1582

    Article  PubMed  CAS  Google Scholar 

  18. White AJ, Lucas B, Jenkinson WE, Anderson G (2018) Invariant NKT cells and control of the thymus medulla. J Immunol 200(10):3333–3339

    Article  CAS  PubMed  Google Scholar 

  19. Godfrey DI, Berzins SP (2007) Control points in NKT-cell development. Nat Rev Immunol 7(7):505–518

    Article  CAS  PubMed  Google Scholar 

  20. Krovi SH, Gapin L (2018) Invariant natural killer T cell subsets-more than just developmental intermediates. Front Immunol 9:1393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Seiler MP, Mathew R, Liszewski MK, Spooner CJ, Spooner C, Barr K, Meng F, Singh H, Bendelac A (2012) Elevated and sustained expression of the transcription factors Egr1 and Egr2 controls NKT lineage differentiation in response to TCR signaling. Nat Immunol 13(3):264–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lazarevic V, Zullo AJ, Schweitzer MN, Staton TL, Gallo EM, Crabtree GR, Glimcher LH (2009) The gene encoding early growth response 2, a target of the transcription factor NFAT, is required for the development and maturation of natural killer T cells. Nat Immunol 10(3):306–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kumar A, Suryadevara N, Hill TM, Bezbradica JS, Van Kaer L, Joyce S (2017) Natural killer T cells: an ecological evolutionary developmental biology perspective. Front Immunol 8:1858

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Kovalovsky D, Uche OU, Eladad S, Hobbs RM, Yi W, Alonzo E, Chua K, Eidson M, Kim HJ, Im JS, Pandolfi PP, Sant’Angelo DB (2008) The BTB-zinc finger transcriptional regulator PLZF controls the development of invariant natural killer T cell effector functions. Nat Immunol 9(9):1055–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Savage AK, Constantinides MG, Han J, Picard D, Martin E, Li B, Lantz O, Bendelac A (2008) The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity 29(3):391–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kwon DI, Lee YJ (2017) Lineage differentiation program of invariant natural killer T cells. Immune Network 17(6):365–377

    Article  PubMed  PubMed Central  Google Scholar 

  27. Constantinides MG, Bendelac A (2013) Transcriptional regulation of the NKT cell lineage. Curr Opin Immunol 25(2):161–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shissler SC, Webb TJ (2019) The ins and outs of type I iNKT cell development. Mol Immunol 105:116–130

    Article  CAS  PubMed  Google Scholar 

  29. Watarai H, Sekine-Kondo E, Shigeura T, Motomura Y, Yasuda T, Satoh R, Yoshida H, Kubo M, Kawamoto H, Koseki H, Taniguchi M (2012) Development and function of invariant natural killer T cells producing T(h)2- and T(h)17-cytokines. PLoS Biol 10(2):e1001255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang H, Hogquist KA (2018) How lipid-specific T cells become effectors: the differentiation of iNKT subsets. Front Immunol 9:1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li J, Wu D, Jiang N, Zhuang Y (2013) Combined deletion of Id2 and Id3 genes reveals multiple roles for E proteins in invariant NKT cell development and expansion. J Immunol 191(10):5052–5064

    Article  CAS  PubMed  Google Scholar 

  32. Wang L, Carr T, Xiong Y, Wildt KF, Zhu J, Feigenbaum L, Bendelac A, Bosselut R (2010) The sequential activity of Gata3 and Thpok is required for the differentiation of CD1d-restricted CD4+ NKT cells. Eur J Immunol 40(9):2385–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thapa P, Romero Arocha S, Chung JY, Sant’Angelo DB, Shapiro VS (2017) Histone deacetylase 3 is required for iNKT cell development. Sci Rep 7(1):5784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. O’Hagan KL, Zhao J, Pryshchep O, Wang CR, Phee H (2015) Pak2 controls acquisition of NKT cell fate by regulating expression of the transcription factors PLZF and Egr2. J Immunol 195(11):5272–5284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Carr T, Krishnamoorthy V, Yu S, Xue HH, Kee BL, Verykokakis M (2015) The transcription factor lymphoid enhancer factor 1 controls invariant natural killer T cell expansion and Th2-type effector differentiation. J Exp Med 212(5):793–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gapin L (2016) Development of invariant natural killer T cells. Curr Opin Immunol 39:68–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cardell S, Tangri S, Chan S, Kronenberg M, Benoist C, Mathis D (1995) CD1-restricted CD4+ T cells in major histocompatibility complex class II-deficient mice. J Exp Med 182(4):993–1004

    Article  CAS  PubMed  Google Scholar 

  38. Park SH, Weiss A, Benlagha K, Kyin T, Teyton L, Bendelac A (2001) The mouse CD1d-restricted repertoire is dominated by a few autoreactive T cell receptor families. J Exp Med 193(8):893–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Genardi S, Visvabharathy L, Cao L, Morgun E, Cui Y, Qi C, Chen YH, Gapin L, Berdyshev E, Wang CR (2020) Type II natural killer T cells contribute to protection against systemic methicillin-resistant Staphylococcus aureus infection. Front Immunol 11:610010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rhost S, Löfbom L, Rynmark BM, Pei B, Månsson JE, Teneberg S, Blomqvist M, Cardell SL (2012) Identification of novel glycolipid ligands activating a sulfatide-reactive, CD1d-restricted, type II natural killer T lymphocyte. Eur J Immunol 42(11):2851–2860

    Article  CAS  PubMed  Google Scholar 

  41. Tatituri RV, Watts GF, Bhowruth V, Barton N, Rothchild A, Hsu FF, Almeida CF, Cox LR, Eggeling L, Cardell S, Rossjohn J, Godfrey DI, Behar SM, Besra GS, Brenner MB, Brigl M (2013) Recognition of microbial and mammalian phospholipid antigens by NKT cells with diverse TCRs. Proc Natl Acad Sci U S A 110(5):1827–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhao J, Weng X, Bagchi S, Wang CR (2014) Polyclonal type II natural killer T cells require PLZF and SAP for their development and contribute to CpG-mediated antitumor response. Proc Natl Acad Sci U S A 111(7):2674–2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avery August .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sahler, J., Anannya, O., Limper, C., Imbiakha, B., Pierpont, T., August, A. (2021). Genetic Analysis of iNKT Cell Development and Function. In: Liu, C. (eds) Invariant Natural Killer T-Cells. Methods in Molecular Biology, vol 2388. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1775-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1775-5_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1774-8

  • Online ISBN: 978-1-0716-1775-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics