Skip to main content

Magnetic Resonance Imaging Methods for Assessment of Hemodynamic Reserve in Chronic Steno-occlusive Cerebrovascular Disease

  • Protocol
  • First Online:
Cerebrovascular Reactivity

Part of the book series: Neuromethods ((NM,volume 175))

Abstract

Assessment of cerebrovascular hemodynamic reserve is an important component of evaluating patients with steno-occlusive cerebrovascular disease, as loss of reserve can be indicative of elevated future stroke risk. Here we describe multimodal magnetic resonance imaging (MRI) techniques for assessment of cerebrovascular reserve, including (1) local blood oxygenation level-dependent (BOLD) signal arising from increased regional blood flow with task performance during functional MRI, using a task paradigm that interrogates cortical areas in all vascular territories simultaneously, (2) global BOLD signal response occurring as a result of increased widespread cerebral blood flow from hypercapnia as a vasodilatory challenge, and (3) direct large cerebral vessel volumetric flow measurements using phase-contrast quantitative MR angiography to assess flow before and after global vasodilation with intravenous acetazolamide. Absence of the expected responses allows detection of compromised or absent hemodynamic reserve. The techniques for performing the different MRI modalities are discussed including relative advantages and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aichner F (1994) Magnetic resonance angiography in cerebrovascular disease: a clinical update. J Stroke Cerebrovasc Dis 4(Suppl 1):S36–S40. https://doi.org/10.1016/s1052-3057(10)80253-8

    Article  PubMed  Google Scholar 

  2. Bryant DJ, Payne JA, Firmin DN, Longmore DB (1984) Measurement of flow with NMR imaging using a gradient pulse and phase difference technique. J Comput Assist Tomogr 8(4):588–593

    Article  CAS  Google Scholar 

  3. Moran PR (1982) A flow velocity zeugmatographic interlace for NMR imaging in humans. Magn Reson Imaging 1(4):197–203

    Article  Google Scholar 

  4. Parker DL, Parker DJ, Blatter DD et al (1996) The effect of image resolution on vessel signal in high-resolution magnetic resonance angiography. J Magn Reson Imaging 6(4):632–641

    Article  CAS  Google Scholar 

  5. Pelc LR, Pelc NJ, Rayhill SC et al (1992) Arterial and venous blood flow: noninvasive quantitation with MR imaging. Radiology 185(3):809–812. https://doi.org/10.1148/radiology.185.3.1438767

    Article  CAS  PubMed  Google Scholar 

  6. Chatzimavroudis GP, Oshinski JN, Franch RH et al (2001) Evaluation of the precision of magnetic resonance phase velocity mapping for blood flow measurements. J Cardiovasc Magn Reson 3(1):11–19. https://doi.org/10.1081/jcmr-100000142

    Article  CAS  PubMed  Google Scholar 

  7. Khodarahmi I, Shakeri M, Kotys-Traughber M et al (2014) In vitro validation of flow measurement with phase contrast MRI at 3 tesla using stereoscopic particle image velocimetry and stereoscopic particle image velocimetry-based computational fluid dynamics. J Magn Reson Imaging 39(6):1477–1485. https://doi.org/10.1002/jmri.24322

    Article  PubMed  Google Scholar 

  8. Ku DN, Biancheri CL, Pettigrew RI et al (1990) Evaluation of magnetic resonance velocimetry for steady flow. J Biomech Eng 112(4):464–472. https://doi.org/10.1115/1.2891212

    Article  CAS  PubMed  Google Scholar 

  9. Meier D, Maier S, Bosiger P (1988) Quantitative flow measurements on phantoms and on blood vessels with MR. Magn Reson Med 8(1):25–34

    Article  CAS  Google Scholar 

  10. Walker MF, Souza SP, Dumoulin CL (1988) Quantitative flow measurement in phase contrast MR angiography. J Comput Assist Tomogr 12(2):304–313

    Article  CAS  Google Scholar 

  11. Zhao M, Curcio AP, Clark ME et al (2004) In vitro validation of MR volumetric flow measurement. In: Proceedings of the 2004 International Workshop on Flow and Motion, pp 148–149

    Google Scholar 

  12. Firmin DN, Nayler GL, Klipstein RH et al (1987) In vivo validation of MR velocity imaging. J Comput Assist Tomogr 11(5):751–756

    Article  CAS  Google Scholar 

  13. Laffon E, Valli N, Latrabe V et al (1998) A validation of a flow quantification by MR phase mapping software. Eur J Radiol 27(2):166–172

    Article  CAS  Google Scholar 

  14. Maier SE, Meier D, Boesiger P et al (1989) Human abdominal aorta: comparative measurements of blood flow with MR imaging and multigated Doppler US. Radiology 171(2):487–492. https://doi.org/10.1148/radiology.171.2.2649924

    Article  CAS  PubMed  Google Scholar 

  15. Van Rossum AC, Sprenger M, Visser FC, Peels KH, Valk J, Roos JP (1991) An in vivo validation of quantitative blood flow imaging in arteries and veins using magnetic resonance phase-shift techniques. Eur Heart J 12(2):117–126. https://doi.org/10.1093/oxfordjournals.eurheartj.a059857

    Article  PubMed  Google Scholar 

  16. Hofman MB, Visser FC, van Rossum AC et al (1995) In vivo validation of magnetic resonance blood volume flow measurements with limited spatial resolution in small vessels. Magn Reson Med 33(6):778–784

    Article  CAS  Google Scholar 

  17. Wendt RE III, Rokey R, Wong WF, Marks A (1992) Magnetic resonance velocity measurements in small arteries. Comparison with Doppler ultrasonic measurements in the aortas of normal rabbits. Investig Radiol 27(7):499–503

    Article  Google Scholar 

  18. Bendel P, Buonocore E, Bockisch A, Besozzi MC (1989) Blood flow in the carotid arteries: quantification by using phase-sensitive MR imaging. AJR Am J Roentgenol 152(6):1307–1310. https://doi.org/10.2214/ajr.152.6.1307

    Article  CAS  PubMed  Google Scholar 

  19. Buijs PC, Krabbe-Hartkamp MJ, Bakker CJ et al (1998) Effect of age on cerebral blood flow: measurement with ungated two-dimensional phase-contrast MR angiography in 250 adults. Radiology 209(3):667–674. https://doi.org/10.1148/radiology.209.3.9844657

    Article  CAS  PubMed  Google Scholar 

  20. Enzmann DR, Ross MR, Marks MP, Pelc NJ (1994) Blood flow in major cerebral arteries measured by phase-contrast cine MR. AJNR Am J Neuroradiol 15(1):123–129

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hendrikse J, van Raamt AF, van der Graaf Y et al (2005) Distribution of cerebral blood flow in the circle of Willis. Radiology 235(1):184–189. https://doi.org/10.1148/radiol.2351031799

    Article  PubMed  Google Scholar 

  22. Marks MP, Pelc NJ, Ross MR, Enzmann DR (1992) Determination of cerebral blood flow with a phase-contrast cine MR imaging technique: evaluation of normal subjects and patients with arteriovenous malformations. Radiology 182(2):467–476. https://doi.org/10.1148/radiology.182.2.1732966

    Article  CAS  PubMed  Google Scholar 

  23. Mattle H, Edelman RR, Wentz KU et al (1991) Middle cerebral artery: determination of flow velocities with MR angiography. Radiology 181(2):527–530. https://doi.org/10.1148/radiology.181.2.1924799

    Article  CAS  PubMed  Google Scholar 

  24. Ravensbergen J, Tarnawski M, Vriens EM et al (1996) New ways of performing in vivo flow velocity measurements in the basilar artery. Neuroradiology 38(1):1–5

    Article  CAS  Google Scholar 

  25. van Everdingen KJ, Klijn CJ, Kappelle LJ et al (1997) MRA flow quantification in patients with a symptomatic internal carotid artery occlusion. The Dutch EC-IC Bypass Study Group. Stroke 28(8):1595–1600. https://doi.org/10.1161/01.str.28.8.1595

    Article  PubMed  Google Scholar 

  26. Pelc NJ, Herfkens RJ, Shimakawa A, Enzmann DR (1991) Phase contrast cine magnetic resonance imaging. Magn Reson Q 7(4):229–254

    CAS  PubMed  Google Scholar 

  27. Bakker CJ, Hartkamp MJ, Mali WP (1996) Measuring blood flow by nontriggered 2D phase-contrast MR angiography. Magn Reson Imaging 14(6):609–614

    Article  CAS  Google Scholar 

  28. Bakker CJ, Kouwenhoven M, Hartkamp MJ et al (1995) Accuracy and precision of time-averaged flow as measured by nontriggered 2D phase-contrast MR angiography, a phantom evaluation. Magn Reson Imaging 13(7):959–965

    Article  CAS  Google Scholar 

  29. Enzmann DR, Marks MP, Pelc NJ (1993) Comparison of cerebral artery blood flow measurements with gated cine and ungated phase-contrast techniques. J Magn Reson Imaging 3(5):705–712

    Article  CAS  Google Scholar 

  30. Maier SE, Cline HE, Jolesz FA (1995) Estimation of average flow in ungated 3D phase contrast angiograms. Magn Reson Med 34(5):706–712

    Article  CAS  Google Scholar 

  31. Zhao M, Charbel FT, Alperin N et al (2000) Improved phase-contrast flow quantification by three-dimensional vessel localization. Magn Reson Imaging 18(6):697–706

    Article  CAS  Google Scholar 

  32. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Comp Graph 21(4):163–169

    Article  Google Scholar 

  33. Ruland S, Zhao M, Pandey D et al (2006) Reproducibility of cerebral blood flow analysis using quantitative magnetic resonance angiography. In: AANS/CNS Cerebrovascular Section 9th Joint Annual Meeting, February 17–20, 2006, Orlando, FL

    Google Scholar 

  34. Zhao M, Ruland S, Pandey D et al (2006) Repeatability of MR volumetric flow measurements in major cerebral arteries. In: 2006 ISMRM Flow and Motion Study Group Workshop: Imaging Assessment of Cardiovascular and Tissue Mechanics, July 13–16, 2006, New York, NY

    Google Scholar 

  35. Vorstrup S, Brun B, Lassen NA (1986) Evaluation of the cerebral vasodilatory capacity by the acetazolamide test before EC-IC bypass surgery in patients with occlusion of the internal carotid artery. Stroke 17(6):1291–1298. https://doi.org/10.1161/01.str.17.6.1291

    Article  CAS  PubMed  Google Scholar 

  36. Yonas H, Pindzola RR (1994) Physiological determination of cerebrovascular reserves and its use in clinical management. Cerebrovasc Brain Metab Rev 6(4):325–340

    CAS  PubMed  Google Scholar 

  37. Caputi L, Ghielmetti F, Farago G et al (2014) Cerebrovascular reactivity by quantitative magnetic resonance angiography with a Co(2) challenge. Validation as a new imaging biomarker. Eur J Radiol 83(6):1005–1010. https://doi.org/10.1016/j.ejrad.2014.03.001

    Article  PubMed  Google Scholar 

  38. de Boorder MJ, Hendrikse J, van der Grond J (2004) Phase-contrast magnetic resonance imaging measurements of cerebral autoregulation with a breath-hold challenge: a feasibility study. Stroke 35(6):1350–1354. https://doi.org/10.1161/01.str.0000128530.75424.63

    Article  PubMed  Google Scholar 

  39. Vagal AS, Leach JL, Fernandez-Ulloa M, Zuccarello M (2009) The acetazolamide challenge: techniques and applications in the evaluation of chronic cerebral ischemia. AJNR Am J Neuroradiol 30(5):876–884. https://doi.org/10.3174/ajnr.A1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bahr-Hosseini M, Shakur SF, Amin-Hanjani S, Charbel FT, Alaraj A (2016) Angiographic correlates of cerebral hemodynamic changes with diamox challenge assessed by quantitative magnetic resonance angiography. Stroke 47(6):1658–1660. https://doi.org/10.1161/strokeaha.116.013015

    Article  PubMed  Google Scholar 

  41. Calderon-Arnulphi M, Amin-Hanjani S, Alaraj A et al (2011) In vivo evaluation of quantitative MR angiography in a canine carotid artery stenosis model. AJNR Am J Neuroradiol 32(8):1552–1559. https://doi.org/10.3174/ajnr.A2546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Amin-Hanjani S, Du X, Pandey DK et al (2015) Effect of age and vascular anatomy on blood flow in major cerebral vessels. J Cereb Blood Flow Metab 35(2):312–318. https://doi.org/10.1038/jcbfm.2014.203

    Article  PubMed  Google Scholar 

  43. Zhao M, Amin-Hanjani S, Ruland S et al (2007) Regional cerebral blood flow using quantitative MR angiography. AJNR Am J Neuroradiol 28(8):1470–1473. https://doi.org/10.3174/ajnr.A0582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Correia de Verdier M, Wikstrom J (2016) Normal ranges and test-retest reproducibility of flow and velocity parameters in intracranial arteries measured with phase-contrast magnetic resonance imaging. Neuroradiology 58(5):521–531. https://doi.org/10.1007/s00234-016-1661-6

    Article  PubMed  Google Scholar 

  45. Ross MR, Pelc NJ, Enzmann DR (1993) Qualitative phase contrast MRA in the normal and abnormal circle of Willis. AJNR Am J Neuroradiol 14(1):19–25

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hagstadius S, Risberg J (1989) Regional cerebral blood flow characteristics and variations with age in resting normal subjects. Brain Cogn 10(1):28–43

    Article  CAS  Google Scholar 

  47. Brisman JL, Pile-Spellman J, Konstas AA (2012) Clinical utility of quantitative magnetic resonance angiography in the assessment of the underlying pathophysiology in a variety of cerebrovascular disorders. Eur J Radiol 81(2):298–302. https://doi.org/10.1016/j.ejrad.2010.12.079

    Article  PubMed  Google Scholar 

  48. Holmstedt CA, Turan TN, Chimowitz MI (2013) Atherosclerotic intracranial arterial stenosis: risk factors, diagnosis, and treatment. Lancet Neurol 12(11):1106–1114. https://doi.org/10.1016/s1474-4422(13)70195-9

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bae YJ, Jung C, Kim JH et al (2015) Quantitative magnetic resonance angiography in internal carotid artery occlusion with primary collateral pathway. J Stroke 17(3):320–326. https://doi.org/10.5853/jos.2015.17.3.320

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ruland S, Ahmed A, Thomas K et al (2009) Leptomeningeal collateral volume flow assessed by quantitative magnetic resonance angiography in large-vessel cerebrovascular disease. J Neuroimaging 19(1):27–30. https://doi.org/10.1111/j.1552-6569.2008.00249.x

    Article  PubMed  Google Scholar 

  51. McVerry F, Liebeskind DS, Muir KW (2012) Systematic review of methods for assessing leptomeningeal collateral flow. AJNR Am J Neuroradiol 33(3):576–582. https://doi.org/10.3174/ajnr.A2794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Amin-Hanjani S, Du X, Zhao M et al (2005) Use of quantitative magnetic resonance angiography to stratify stroke risk in symptomatic vertebrobasilar disease. Stroke 36(6):1140–1145. https://doi.org/10.1161/01.STR.0000166195.63276.7c

    Article  PubMed  Google Scholar 

  53. Amin-Hanjani S, Pandey DK, Rose-Finnell L et al (2016) Effect of hemodynamics on stroke risk in symptomatic atherosclerotic vertebrobasilar occlusive disease. JAMA Neurol 73(2):178–185. https://doi.org/10.1001/jamaneurol.2015.3772

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bauer AM, Amin-Hanjani S, Alaraj A, Charbel FT (2009) Quantitative magnetic resonance angiography in the evaluation of the subclavian steal syndrome: report of 5 patients. J Neuroimaging 19(3):250–252. https://doi.org/10.1111/j.1552-6569.2008.00297.x

    Article  PubMed  Google Scholar 

  55. Douglas AF, Christopher S, Amankulor N et al (2011) Extracranial carotid plaque length and parent vessel diameter significantly affect baseline ipsilateral intracranial blood flow. Neurosurgery 69(4):767–773.; discussion 773. https://doi.org/10.1227/NEU.0b013e31821ff8f4

    Article  PubMed  Google Scholar 

  56. Ghogawala Z, Amin-Hanjani S, Curran J et al (2013) The effect of carotid endarterectomy on cerebral blood flow and cognitive function. J Stroke Cerebrovasc Dis 22(7):1029–1037. https://doi.org/10.1016/j.jstrokecerebrovasdis.2012.03.016

    Article  PubMed  Google Scholar 

  57. Derdeyn CP, Chimowitz MI, Lynn MJ et al (2014) Aggressive medical treatment with or without stenting in high-risk patients with intracranial artery stenosis (SAMMPRIS): the final results of a randomised trial. Lancet 383(9914):333–341. https://doi.org/10.1016/s0140-6736(13)62038-3

    Article  PubMed  Google Scholar 

  58. Zaidat OO, Castonguay AC, Fitzsimmons BF et al (2013) Design of the Vitesse Intracranial Stent Study for Ischemic Therapy (VISSIT) trial in symptomatic intracranial stenosis. J Stroke Cerebrovasc Dis 22(7):1131–1139. https://doi.org/10.1016/j.jstrokecerebrovasdis.2012.10.021

    Article  PubMed  Google Scholar 

  59. Guppy KH, Charbel FT, Corsten LA et al (2002) Hemodynamic evaluation of basilar and vertebral artery angioplasty. Neurosurgery 51(2):327–333. discussion 333-324

    Article  Google Scholar 

  60. Langer DJ, Lefton DR, Ostergren L et al (2006) Hemispheric revascularization in the setting of carotid occlusion and subclavian steal: a diagnostic and management role for quantitative magnetic resonance angiography? Neurosurgery 58(3):528–533.; discussion 528-533. https://doi.org/10.1227/01.neu.0000197331.41985.15

    Article  PubMed  Google Scholar 

  61. Prabhakaran S, Wells KR, Jhaveri MD, Lopes DK (2011) Hemodynamic changes following wingspan stent placement--a quantitative magnetic resonance angiography study. J Neuroimaging 21(2):e109–e113. https://doi.org/10.1111/j.1552-6569.2009.00425.x

    Article  PubMed  Google Scholar 

  62. Shakur SF, Amin-Hanjani S, Bednarski C et al (2015) Intracranial blood flow changes after extracranial carotid artery stenting. Neurosurgery 76(3):330–336. https://doi.org/10.1227/neu.0000000000000618

    Article  PubMed  Google Scholar 

  63. Amin-Hanjani S, Alaraj A, Calderon-Arnulphi M et al (2010) Detection of intracranial in-stent restenosis using quantitative magnetic resonance angiography. Stroke 41(11):2534–2538. https://doi.org/10.1161/strokeaha.110.594739

    Article  PubMed  Google Scholar 

  64. Prabhakaran S, Warrior L, Wells KR et al (2009) The utility of quantitative magnetic resonance angiography in the assessment of intracranial in-stent stenosis. Stroke 40(3):991–993. https://doi.org/10.1161/strokeaha.108.522391

    Article  PubMed  Google Scholar 

  65. Sun W, Ruan Z, Dai X et al (2018) Quantifying hemodynamic changes in moyamoya disease based on two-dimensional cine phase-contrast magnetic resonance imaging and computational fluid dynamics. World Neurosurg 120:e1301–e1309. https://doi.org/10.1016/j.wneu.2018.09.057

    Article  PubMed  Google Scholar 

  66. Khan N, Lober RM, Ostergren L et al (2017) Measuring cerebral blood flow in moyamoya angiopathy by quantitative magnetic resonance angiography noninvasive optimal vessel analysis. Neurosurgery 81(6):921–927. https://doi.org/10.1093/neuros/nyw122

    Article  PubMed  Google Scholar 

  67. Neff KW, Horn P, Schmiedek P et al (2006) 2D cine phase-contrast MRI for volume flow evaluation of the brain-supplying circulation in moyamoya disease. AJR Am J Roentgenol 187(1):W107–W115. https://doi.org/10.2214/ajr.05.0219

    Article  PubMed  Google Scholar 

  68. Amin-Hanjani S, Shin JH, Zhao M et al (2007) Evaluation of extracranial-intracranial bypass using quantitative magnetic resonance angiography. J Neurosurg 106(2):291–298. https://doi.org/10.3171/jns.2007.106.2.291

    Article  PubMed  Google Scholar 

  69. Kim T, Bang JS, Kwon OK et al (2017) Hemodynamic changes after unilateral revascularization for moyamoya disease: serial assessment by quantitative magnetic resonance angiography. Neurosurgery 81(1):111–119. https://doi.org/10.1093/neuros/nyw035

    Article  PubMed  Google Scholar 

  70. Zhu F, Qian Y, Xu B et al (2018) Quantitative assessment of changes in hemodynamics of the internal carotid artery after bypass surgery for moyamoya disease. J Neurosurg 129(3):677–683. https://doi.org/10.3171/2017.5.jns163112

    Article  PubMed  Google Scholar 

  71. Amin-Hanjani S, Singh A, Rifai H et al (2013) Combined direct and indirect bypass for moyamoya: quantitative assessment of direct bypass flow over time. Neurosurgery 73(6):962–967.; discussion 967-968. https://doi.org/10.1227/neu.0000000000000139

    Article  PubMed  Google Scholar 

  72. Krishnamurthy R, Bahouth SM, Muthupillai R (2016) 4D Contrast-enhanced MR angiography with the keyhole technique in children: technique and clinical applications. Radiographics 36(2):523–537. https://doi.org/10.1148/rg.2016150106

    Article  PubMed  Google Scholar 

  73. Willinek WA, Hadizadeh DR, von Falkenhausen M et al (2008) 4D time-resolved MR angiography with keyhole (4D-TRAK): more than 60 times accelerated MRA using a combination of CENTRA, keyhole, and SENSE at 3.0T. J Magn Reson Imaging 27(6):1455–1460. https://doi.org/10.1002/jmri.21354

    Article  PubMed  Google Scholar 

  74. Meng L, Gelb AW (2015) Regulation of cerebral autoregulation by carbon dioxide. Anesthesiology 122(1):196–205. https://doi.org/10.1097/aln.0000000000000506

    Article  PubMed  Google Scholar 

  75. Peterson EC, Wang Z, Britz G (2011) Regulation of cerebral blood flow. Int J Vasc Med 2011:823525. https://doi.org/10.1155/2011/823525

    Article  PubMed  PubMed Central  Google Scholar 

  76. Strandgaard S, Olesen J, Skinhoj E, Lassen NA (1973) Autoregulation of brain circulation in severe arterial hypertension. Br Med J 1(5852):507–510. https://doi.org/10.1136/bmj.1.5852.507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Berg JM, Tymoczko JL, Stryer L (2002) Hemoglobin transports oxygen efficiently by binding oxygen cooperatively. In: Biochemistry, 5th edn. W H Freeman, New York, NY

    Google Scholar 

  78. Cipolla MJ (2009) Anatomy and ultrastructure. In: The cerebral circulation. Morgan & Claypool Life Sciences, San Rafael, CA

    Chapter  Google Scholar 

  79. Duvernoy HM, Delon S, Vannson JL (1981) Cortical blood vessels of the human brain. Brain Res Bull 7(5):519–579. https://doi.org/10.1016/0361-9230(81)90007-1

    Article  CAS  PubMed  Google Scholar 

  80. Clarke DD, Sokoloff L (1999) Regulation of cerebral metabolic rate. In: Siegel GJ, Agranoff BW, Albers RW et al (eds) Basic neurochemistry: molecular, cellular and medical aspects, 6th edn. Lippincott-Raven, Philadelphia, PA

    Google Scholar 

  81. Karbowski J (2011) Scaling of brain metabolism and blood flow in relation to capillary and neural scaling. PLoS One 6(10):e26709. https://doi.org/10.1371/journal.pone.0026709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ogawa S, Tank DW, Menon R et al (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 89(13):5951–5955. https://doi.org/10.1073/pnas.89.13.5951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ogawa S, Menon RS, Tank DW et al (1993) Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J 64(3):803–812. https://doi.org/10.1016/s0006-3495(93)81441-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bandettini PA, Wong EC, Hinks RS et al (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25(2):390–397. https://doi.org/10.1002/mrm.1910250220

    Article  CAS  PubMed  Google Scholar 

  85. Kwong KK, Belliveau JW, Chesler DA et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 89(12):5675–5679. https://doi.org/10.1073/pnas.89.12.5675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gauthier CJ, Fan AP (2019) BOLD signal physiology: models and applications. NeuroImage 187:116–127. https://doi.org/10.1016/j.neuroimage.2018.03.018

    Article  CAS  PubMed  Google Scholar 

  87. Herscovitch P, Mintun MA, Raichle ME (1985) Brain oxygen utilization measured with oxygen-15 radiotracers and positron emission tomography: generation of metabolic images. J Nucl Med 26(4):416–417

    CAS  PubMed  Google Scholar 

  88. Pantano P, Baron JC, Lebrun-Grandie P et al (1984) Regional cerebral blood flow and oxygen consumption in human aging. Stroke 15(4):635–641. https://doi.org/10.1161/01.str.15.4.635

    Article  CAS  PubMed  Google Scholar 

  89. Ter-Pogossian MM, Herscovitch P (1985) Radioactive oxygen-15 in the study of cerebral blood flow, blood volume, and oxygen metabolism. Semin Nucl Med 15(4):377–394

    Article  CAS  Google Scholar 

  90. Powers WJ, Press GA, Grubb RL et al (1987) The effect of hemodynamically significant carotid artery disease on the hemodynamic status of the cerebral circulation. Ann Intern Med 106(1):27–34. https://doi.org/10.7326/0003-4819-106-1-27

    Article  CAS  PubMed  Google Scholar 

  91. Sette G, Baron JC, Mazoyer B et al (1989) Local brain haemodynamics and oxygen metabolism in cerebrovascular disease. Positron emission tomography. Brain 112(Pt 4):931–951. https://doi.org/10.1093/brain/112.4.931

    Article  PubMed  Google Scholar 

  92. Powers WJ (1991) Cerebral hemodynamics in ischemic cerebrovascular disease. Ann Neurol 29(3):231–240. https://doi.org/10.1002/ana.410290302

    Article  CAS  PubMed  Google Scholar 

  93. Ito H, Kanno I, Fukuda H (2005) Human cerebral circulation: positron emission tomography studies. Ann Nucl Med 19(2):65–74

    Article  Google Scholar 

  94. Kamath A, Smith WS, Powers WJ et al (2008) Perfusion CT compared to H(2) (15)O/O (15)O PET in patients with chronic cervical carotid artery occlusion. Neuroradiology 50(9):745–751. https://doi.org/10.1007/s00234-008-0403-9

    Article  PubMed  PubMed Central  Google Scholar 

  95. Derdeyn CP, Videen TO, Yundt KD et al (2002) Variability of cerebral blood volume and oxygen extraction: stages of cerebral haemodynamic impairment revisited. Brain 125(Pt 3):595–607. https://doi.org/10.1093/brain/awf047

    Article  PubMed  Google Scholar 

  96. Aoe J, Watabe T, Shimosegawa E et al (2018) Evaluation of the default-mode network by quantitative (15)O-PET: comparative study between cerebral blood flow and oxygen consumption. Ann Nucl Med 32(7):485–491. https://doi.org/10.1007/s12149-018-1272-x

    Article  PubMed  PubMed Central  Google Scholar 

  97. Guadagno JV, Jones PS, Fryer TD et al (2006) Local relationships between restricted water diffusion and oxygen consumption in the ischemic human brain. Stroke 37(7):1741–1748. https://doi.org/10.1161/01.str.0000232437.00621.86

    Article  PubMed  Google Scholar 

  98. Fierstra J, van Niftrik C, Warnock G et al (2018) Staging hemodynamic failure with blood oxygen-level-dependent functional magnetic resonance imaging cerebrovascular reactivity: a comparison versus gold standard ((15)O-)H2O-positron emission tomography. Stroke 49(3):621–629. https://doi.org/10.1161/strokeaha.117.020010

    Article  PubMed  Google Scholar 

  99. Huettel SA, Song AW, McCarthy G (2009) Functional magnetic resonance imaging, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  100. Thulborn KR, Waterton JC, Matthews PM, Radda GK (1982) Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta 714(2):265–270. https://doi.org/10.1016/0304-4165(82)90333-6

    Article  CAS  PubMed  Google Scholar 

  101. Thulborn KR, Atkinson IC, Alexander A et al (2018) Comparison of blood oxygenation level-dependent fMRI and provocative DSC perfusion MR imaging for monitoring cerebrovascular reserve in intracranial chronic cerebrovascular disease. AJNR Am J Neuroradiol 39(3):448–453. https://doi.org/10.3174/ajnr.A5515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Thulborn KR (1999) Clinical rationale for very-high-field (3.0 Tesla) functional magnetic resonance imaging. Top Magn Reson Imaging 10(1):37–50

    Article  CAS  Google Scholar 

  103. Thulborn KR (1999) Visual feedback to stabilize head position for fMRI. Magn Reson Med 41(5):1039–1043. https://doi.org/10.1002/(sici)1522-2594(199905)41:5<1039::aid-mrm24>3.0.co;2-n

    Article  CAS  PubMed  Google Scholar 

  104. De Vis JB, Bhogal AA, Hendrikse J et al (2018) Effect sizes of BOLD CVR, resting-state signal fluctuations and time delay measures for the assessment of hemodynamic impairment in carotid occlusion patients. NeuroImage 179:530–539. https://doi.org/10.1016/j.neuroimage.2018.06.017

    Article  PubMed  Google Scholar 

  105. Juttukonda MR, Donahue MJ (2019) Neuroimaging of vascular reserve in patients with cerebrovascular diseases. NeuroImage 187:192–208. https://doi.org/10.1016/j.neuroimage.2017.10.015

    Article  PubMed  Google Scholar 

  106. Mandell DM, Han JS, Poublanc J et al (2008) Mapping cerebrovascular reactivity using blood oxygen level-dependent MRI in Patients with arterial steno-occlusive disease: comparison with arterial spin labeling MRI. Stroke 39(7):2021–2028. https://doi.org/10.1161/strokeaha.107.506709

    Article  PubMed  Google Scholar 

  107. Poublanc J, Han JS, Mandell DM et al (2013) Vascular steal explains early paradoxical blood oxygen level-dependent cerebrovascular response in brain regions with delayed arterial transit times. Cerebrovasc Dis Extra 3(1):55–64. https://doi.org/10.1159/000348841

    Article  PubMed  PubMed Central  Google Scholar 

  108. Poublanc J, Crawley AP, Sobczyk O et al (2015) Measuring cerebrovascular reactivity: the dynamic response to a step hypercapnic stimulus. J Cereb Blood Flow Metab 35(11):1746–1756. https://doi.org/10.1038/jcbfm.2015.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sobczyk O, Battisti-Charbonney A, Poublanc J et al (2015) Assessing cerebrovascular reactivity abnormality by comparison to a reference atlas. J Cereb Blood Flow Metab 35(2):213–220. https://doi.org/10.1038/jcbfm.2014.184

    Article  PubMed  Google Scholar 

  110. Spano VR, Mandell DM, Poublanc J et al (2013) CO2 blood oxygen level-dependent MR mapping of cerebrovascular reserve in a clinical population: safety, tolerability, and technical feasibility. Radiology 266(2):592–598. https://doi.org/10.1148/radiol.12112795

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

KRT acknowledges financial support from NIH RO1 NS059745 stroke.

Disclosures: KRT is the owner of the commercially available MRIx Technologies software used for the analysis of fMRI studies in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sepideh Amin-Hanjani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Thulborn, K.R., McGuire, L.S., Charbel, F.T., Amin-Hanjani, S. (2022). Magnetic Resonance Imaging Methods for Assessment of Hemodynamic Reserve in Chronic Steno-occlusive Cerebrovascular Disease. In: Chen, J., Fierstra, J. (eds) Cerebrovascular Reactivity. Neuromethods, vol 175. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1763-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1763-2_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1762-5

  • Online ISBN: 978-1-0716-1763-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics