Skip to main content

CRISPR/Cas9-Mediated Genetic Engineering to Generate a Disease Model Prairie Vole, Based on Species-Optimized Assisted Reproductive Technology

  • Protocol
  • First Online:
Oxytocin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2384))

Abstract

Social and prosocial behaviors, including communication, social bonding, and affiliation, parental behaviors, and empathy are key features of a highly social mammalian species. However, the neuronal mechanism in the brain underlying these behaviors remains unclear because of limited information on the social and prosocial behavioral levels in rodent models generally used in behavioral neuroscience studies.

The rodent species, prairie vole (Microtus ochrogaster), is one of the nontraditional animal models with several advantages in experimental science over other rodent models, such as mice or rats. Additionally, it demonstrates characteristics advantageous in the study of social and prosocial behaviors, such as monogamous pair bonding behavior, biparental care, and consoling behavior toward partners stressed by aversive foot shock stimulus. Recent studies of prairie voles have highlighted the importance of oxytocin (OXT) and oxytocin receptor (OXTR)-mediated mechanisms in the regulation of these behaviors.

Recently, we established assisted reproductive technologies for prairie voles, and successfully and efficiently generated an OXTR gene knockout (KO) prairie vole using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9 ), a powerful genome editing tool with artificially developed single-strand guide RNAs (sgRNA) and Cas9 endonucleases.

Herein, we describe the method for CRISPR /Cas9-mediated generation of OXTR KO prairie vole. This OXTR KO prairie vole can be a valuable tool to understand their unique social and prosocial behaviors and elucidate how the oxytocin system influences or modulates these behaviors in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guastella AJ, Hickie IB (2016) Oxytocin treatment, circuitry, and autism: a critical review of the literature placing oxytocin into the autism context. Biol Psychiatry 79(3):234–242. https://doi.org/10.1016/j.biopsych.2015.06.028

    Article  CAS  PubMed  Google Scholar 

  2. Guastella AJ, Einfeld SL, Gray KM, Rinehart NJ, Tonge BJ, Lambert TJ, Hickie IB (2010) Intranasal oxytocin improves emotion recognition for youth with autism spectrum disorders. Biol Psychiatry 67(7):692–694. https://doi.org/10.1016/j.biopsych.2009.09.020

    Article  CAS  PubMed  Google Scholar 

  3. Andari E, Duhamel JR, Zalla T, Herbrecht E, Leboyer M, Sirigu A (2010) Promoting social behavior with oxytocin in high-functioning autism spectrum disorders. Proc Natl Acad Sci U S A 107(9):4389–4394. https://doi.org/10.1073/pnas.0910249107

    Article  PubMed  PubMed Central  Google Scholar 

  4. Beery AK, Christensen JD, Lee NS, Blandino KL (2018) Specificity in sociality: mice and prairie voles exhibit different patterns of peer affiliation. Front Behav Neurosci 12:50. https://doi.org/10.3389/fnbeh.2018.00050

    Article  PubMed  PubMed Central  Google Scholar 

  5. Burkett JP, Andari E, Johnson ZV, Curry DC, de Waal FB, Young LJ (2016) Oxytocin-dependent consolation behavior in rodents. Science 351(6271):375–378. https://doi.org/10.1126/science.aac4785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. King LB, Walum H, Inoue K, Eyrich NW, Young LJ (2016) Variation in the oxytocin receptor gene predicts brain region-specific expression and social attachment. Biol Psychiatry 80(2):160–169. https://doi.org/10.1016/j.biopsych.2015.12.008

    Article  CAS  PubMed  Google Scholar 

  7. Walum H, Young LJ (2018) The neural mechanisms and circuitry of the pair bond. Nat Rev Neurosci 19(11):643–654. https://doi.org/10.1038/s41583-018-0072-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Young LJ, Wang Z (2004) The neurobiology of pair bonding. Nat Neurosci 7(10):1048–1054. https://doi.org/10.1038/nn1327

    Article  CAS  PubMed  Google Scholar 

  9. Young LJ, Lim MM, Gingrich B, Insel TR (2001) Cellular mechanisms of social attachment. Horm Behav 40(2):133–138. https://doi.org/10.1006/hbeh.2001.1691

    Article  CAS  PubMed  Google Scholar 

  10. Keebaugh AC, Barrett CE, Laprairie JL, Jenkins JJ, Young LJ (2015) RNAi knockdown of oxytocin receptor in the nucleus accumbens inhibits social attachment and parental care in monogamous female prairie voles. Soc Neurosci 10(5):561–570. https://doi.org/10.1080/17470919.2015.1040893

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wan H, Feng C, Teng F, Yang S, Hu B, Niu Y, Xiang AP, Fang W, Ji W, Li W, Zhao X, Zhou Q (2015) One-step generation of p53 gene biallelic mutant Cynomolgus monkey via the CRISPR/Cas system. Cell Res 25(2):258–261. https://doi.org/10.1038/cr.2014.158

    Article  CAS  PubMed  Google Scholar 

  12. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153(4):910–918. https://doi.org/10.1016/j.cell.2013.04.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096. https://doi.org/10.1126/science.1258096

    Article  CAS  PubMed  Google Scholar 

  15. Sakuma T, Nakade S, Sakane Y, Suzuki KT, Yamamoto T (2016) MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat Protoc 11(1):118–133. https://doi.org/10.1038/nprot.2015.140

    Article  CAS  PubMed  Google Scholar 

  16. Honda A, Hirose M, Sankai T, Yasmin L, Yuzawa K, Honsho K, Izu H, Iguchi A, Ikawa M, Ogura A (2015) Single-step generation of rabbits carrying a targeted allele of the tyrosinase gene using CRISPR/Cas9. Exp Anim 64(1):31–37. https://doi.org/10.1538/expanim.14-0034

    Article  CAS  PubMed  Google Scholar 

  17. Kou Z, Wu Q, Kou X, Yin C, Wang H, Zuo Z, Zhuo Y, Chen A, Gao S, Wang X (2015) CRISPR/Cas9-mediated genome engineering of the ferret. Cell Res 25(12):1372–1375. https://doi.org/10.1038/cr.2015.130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hai T, Teng F, Guo R, Li W, Zhou Q (2014) One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res 24(3):372–375. https://doi.org/10.1038/cr.2014.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Horie K, Hidema S, Hirayama T, Nishimori K (2015) In vitro culture and in vitro fertilization techniques for prairie voles (Microtus ochrogaster). Biochem Biophys Res Commun 463(4):907–911. https://doi.org/10.1016/j.bbrc.2015.06.033

    Article  CAS  PubMed  Google Scholar 

  20. Horie K, Inoue K, Suzuki S, Adachi S, Yada S, Hirayama T, Hidema S, Young LJ, Nishimori K (2019) Oxytocin receptor knockout prairie voles generated by CRISPR/Cas9 editing show reduced preference for social novelty and exaggerated repetitive behaviors. Horm Behav 111:60–69. https://doi.org/10.1016/j.yhbeh.2018.10.011

    Article  CAS  PubMed  Google Scholar 

  21. Xiao A, Cheng Z, Kong L, Zhu Z, Lin S, Gao G, Zhang B (2014) CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics 30(8):1180–1182. https://doi.org/10.1093/bioinformatics/btt764

    Article  CAS  PubMed  Google Scholar 

  22. Mashiko D, Fujihara Y, Satouh Y, Miyata H, Isotani A, Ikawa M (2013) Generation of mutant mice by pronuclear injection of circular plasmid expressing Cas9 and single guided RNA. Sci Rep 3:3355. https://doi.org/10.1038/srep03355

    Article  PubMed  PubMed Central  Google Scholar 

  23. Guschin DY, Waite AJ, Katibah GE, Miller JC, Holmes MC, Rebar EJ (2010) A rapid and general assay for monitoring endogenous gene modification. Methods Mol Biol 649:247–256. https://doi.org/10.1007/978-1-60761-753-2_15

    Article  CAS  PubMed  Google Scholar 

  24. Inoue A, Ishiguro J, Kitamura H, Arima N, Okutani M, Shuto A, Higashiyama S, Ohwada T, Arai H, Makide K, Aoki J (2012) TGFα shedding assay: an accurate and versatile method for detecting GPCR activation. Nat Methods 9(10):1021–1029. https://doi.org/10.1038/nmeth.2172

    Article  CAS  PubMed  Google Scholar 

  25. Ross HE, Freeman SM, Spiegel LL, Ren X, Terwilliger EF, Young LJ (2009) Variation in oxytocin receptor density in the nucleus accumbens has differential effects on affiliative behaviors in monogamous and polygamous voles. J Neurosci 29(5):1312–1318. https://doi.org/10.1523/JNEUROSCI.5039-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by JSPS Grant-in-Aid for Scientific Research (A) [Grant Numbers 15H02442 (2015–2018)], JSPS Grant-in-Aid for challenging Exploratory Research [Grant Numbers 16K15698 (2016–2017)], JSPS Grant in Aid for JSPS Research Fellow [Grant Number 16J05070 (2016–2019)], and Strategic Research Program for Brain Sciences from Japan Agency for Medical Research and Development (AMED) [Grant Numbers 18dm0107076h0003 (2016–2020)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuhiko Nishimori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Horie, K., Nishimori, K. (2022). CRISPR/Cas9-Mediated Genetic Engineering to Generate a Disease Model Prairie Vole, Based on Species-Optimized Assisted Reproductive Technology . In: Werry, E.L., Reekie, T.A., Kassiou, M. (eds) Oxytocin. Methods in Molecular Biology, vol 2384. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1759-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1759-5_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1758-8

  • Online ISBN: 978-1-0716-1759-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics