Skip to main content

Viewing Images

  • Chapter
  • First Online:
Practical Imaging Informatics

Abstract

Radiologic diagnosis relies on human beings seeing, perceiving, and processing images. Some of these steps are well understood, while others are being actively studied. A thorough understanding of how display monitors work and how human perception works is critical to optimizing the interactions between humans and computers. Mammography is a specialized topic within radiology, with unique IT requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bevins NB, Silosky MS, Badano A, Marsh RM, Flynn MJ, Walz-Flannigan AI. Practical application of AAPM Report 270 in display quality assurance: a report of Task Group 270. Med Phys. 2020; https://doi.org/10.1002/mp.14227.

  2. McKoy K, Antoniotti NM, Armstrong A, Basjshur R, Bernard J, Bernstein D, Burdick A, Edison K, Goldyne M, Kovarik C, Krupinski EA, Kvedar J, Larkey J, Lee-Keltner I, Lipoff JB, Oh DH, Pak H, Seraly MP, Siegel D, Tejasvi T, Whited J. Practice guidelines for teledermatology. Telemed J E Health. 2016;12:981–90.

    Article  Google Scholar 

  3. Pantanowitz L, Dickinson K, Evans AJ, Hassell LA, Henricks WH, Lennerz JK, Lowe A, Parwani AV, Riben M, Smith D, Tuthill JM, Weinstein RS, Wilbur DC, Krupinski EA, Bernard J. American Telemedicine Association clinical guidelines for telepathology. J Pathol Inform. 2014;5:39.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Snowden R, Thompson P, Troscianko T. Basic vision: an introduction to visual perception. Oxford: Oxford University Press; 2012.

    Google Scholar 

  5. Ruckdeschel TG, Keener CR, Kofler JM, Nagy P, Samei E, Andriole KP, Krupinski E, Seibert JA, Towbin AJ, Bevins NB, Lewis DA. ACR-AAPM-SIIM technical standard for electronic practice of medical imaging. 2017. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwi1kpfS0qzrAhWHnOAKHZ-lAOIQFjAAegQIBxAB&url=https%3A%2F%2Fwww.acr.org%2F-%2Fmedia%2FACR%2FFiles%2FPractice-Parameters%2Felec-practice-medimag.pdf&usg=AOvVaw2lDxY5useu0iV_lclhBK9Z.

  6. Badano A, Revie C, Casertano A, Cheng WC, Green P, Kimpe T, Krupinski E, Sisson C, Skrovseth S, Treanor D, Boynton P, Clunie D, Flynn MJ, Heki T, Hewitt S, Homma H, Masia A, Matsui T, Nagy B, Nishibori M, Penczek J, Schopf T, Yagi Y, Yokoi H, Summit on Color in Medical Imaging. Consistency and standardization of color in medical imaging: a consensus report. J Digit Imaging. 2015;28:41–52.

    Article  PubMed  Google Scholar 

  7. Abel JT, Ouillette P, Williams CL, Blau J, Cheng J, Yao K, Lee WY, Cornish TC, Balis UGJ, McClintock DS. Display characteristics and their impact on digital pathology: a current review of pathologists’ future “microscope”. J Pathol Inform. 2020;11:23.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Elsayed M, Kadom N, Ghobadi C, Strauss B, Al Dandan O, Aggarwal A, Anzai Y, Griffith B, Lazarow F, Straus CM, Safdar NM. Virtual and augmented reality: potential applications in radiology. Acta Radiol. 2020;61(9):1258–65. https://doi.org/10.1177/0284185119897362.

    Article  PubMed  Google Scholar 

  9. Uppot RN, Laguna B, McCarthy CJ, De Novi G, Phelps A, Siegel E, Courtier J. Implementing virtual and augmented reality tools for radiology education and training, communication and clinical care. Radiology. 2019;291:570–80.

    Article  PubMed  Google Scholar 

  10. American Association of Physicists in Medicine. Task Group 18: assessment of display performance for medical imaging systems. https://www.aapm.org/pubs/reports/detail.asp. Last accessed 25 Aug 2020.

  11. Monitor Calibration Methods. http://www.drycreekphoto.com/Learn/monitor_calibration.htm. Last accessed 7 May 2008.

  12. American College of Radiology Practice Guideline for Digital Radiography. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjQi9jUnbfrAhXodN8KHY2gCdQQFjAAegQIARAB&url=https%3A%2F%2Fwww.acr.org%2F-%2Fmedia%2FACR%2FFiles%2FPractice-Parameters%2FRad-Digital.pdf&usg=AOvVaw0_I3Pp50hchLkpWHicxLMr. Last accessed 25 Aug 2020.

  13. Dikici E, Bigelow M, Prevedello LM, White RD, Erdal BS. Integrating AI into radiology workflow: levels of research, production, and feedback maturity. J Med Imaging. 2020;7:016502.

    Article  Google Scholar 

  14. Kotter E, Ranschaert E. Challenges and solutions for introducing artificial intelligence (AI) into daily clinical workflow. Eur Radiol. 2021;31:5–7. https://doi.org/10.1007/s00330-020-07148-2.

    Article  PubMed  Google Scholar 

  15. Jacobson FL. Medical image perception research in the emerging age of artificial intelligence. Radiology. 2020;294:210–1.

    Article  PubMed  Google Scholar 

  16. Seidel RL, Krupinski EA. Optimizing ergonomics in breast imaging. J Breast Imaging. 2019;1:234–8.

    Article  Google Scholar 

  17. Degnan AJ, Ghobadi EH, Hardy P, Krupinski E, Scali EP, Stratchko L, Ulano A, Walker E, Wasnik AP, Auffermann WF. Perceptual and interpretative error in diagnostic radiology – causes and potential solutions. Acad Radiol. 2019;26:833–45.

    Article  PubMed  Google Scholar 

  18. Texeira PAG, Leplat C, Lombard C, Rauch A, Germain E, Waled AA, Jendoubi S, Bonarelli C, Padoin P, Simon L, Gillet R, Blum A, Nancy Radiology Ergonomics Group. Alternative PACS interface devices are well-accepted and may reduce radiologist’s musculoskeletal discomfort as compared to keyboard-mouse-recording device. Eur Radiol. 2020;30:5200–8.

    Article  Google Scholar 

  19. Grigorian A, Fang P, Kirk T, Efendizade A, Jadidi J, Sighary M, Cohen-Addad DI. Learning from gamers: integrating alternative input devices and AutoHotkey scripts to simplify repetitive tasks and improve workflow. Radiographics. 2020;40:141–50.

    Article  PubMed  Google Scholar 

  20. Taylor-Phillips S, Stinton C. Fatigue in radiology: a fertile area for future research. Br J Radiol. 2019;92:20190043.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhan H, Schartz K, Zygmont ME, Johnson JO, Krupinski EA. The impact of fatigue on complex CT case interpretation by radiology references. Acad Radiol. 2021;28(3):424–32. https://doi.org/10.1016/j.acra.2020.06.005.

    Article  PubMed  Google Scholar 

  22. Stec N, Arje D, Moody AR, Krupinski EA, Tyrell PN. A systematic review of fatigue in radiology: is it a problem? Am J Roentgenol. 2018;210:799–806.

    Article  Google Scholar 

  23. Hanna TN, Zygmont ME, Peterson R, Theriot D, Shekhani H, Johnson JO, Krupinski EA. The effects of fatigue from overnight shifts on radiology search patterns and diagnostic performance. J Am Coll Radiol. 2018;15:1709–16.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Waite S, Kolla S, Jeudy J, Legasto A, Macknik SL, Martinez-Conde S, Krupinski EA, Reede DL. Tired in the reading room: the influence of fatigue in radiology. J Am Coll Radiol. 2017;14:191–7.

    Article  PubMed  Google Scholar 

  25. Nihashi T, Ishigaki T, Satake H, Ito S, Kaii O, Mori Y, Shimamoto K, Fukushima H, Suzuki K, Umakoshi H, Ohashi M, Kawaguchi F, Naganawa S. Monitoring of fatigue in radiologists during prolonged image interpretation using fNIRS. Jpn J Radiol. 2019;37:437–48.

    Article  CAS  PubMed  Google Scholar 

  26. Krupinski EA, Berbaum KS, Caldwell RT, Schartz KM, Kim J. Long radiology workdays reduce detection and accommodation accuracy. J Am Coll Radiol. 2010;7:698–704.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Krupinski EA, Berbaum KS. Measurement of visual strain in radiologists. Acad Radiol. 2009;16:947–50.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Krupinski EA, Berbaum KS, Schartz KM, Caldwell RT, Madsen MT. The impact of fatigue on satisfaction of search in chest radiography. Acad Radiol. 2017;24:1058–63.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Krupinski EA, Berbaum KS, Caldwell RT, Schartz KM, Madsen MT, Kramer DJ. Do long radiology workdays affect nodule detection in dunamic CT interpretation? J Am Coll Radiol. 2012;9:191–8.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Krupinski EA, Schartz KM, van Tassell MS, Madsen MT, Caldwell RT, Berbaum KS. Effect of fatigue on reading computed tomography examination of the multiply injured patient. J Med Imaging. 2017;4:035504.

    Article  Google Scholar 

  31. US Food and Drug Administration. Radiation-emitting products: frequently asked questions about MQSA. https://www.fda.gov/radiation-emitting-products/consumer-information-mqsa/frequently-asked-questions-about-mqsa.

  32. US Food and Drug Administration. Mammography facility surveys, mammography equipment evaluations, and medical physicist qualification requirements under MQSA. Guidance document. Docket FDA-2009-D-0448. 13 Sept 2005.

    Google Scholar 

  33. US Food and Drug Administration. Display devices for diagnostic radiology – guidance for industry and Food and Drug Administration staff. 2 Oct 2017. https://www.fda.gov/media/95527/download.

  34. Krupinski EA, Morgan MB, Siegel EL. ACR–AAPM–SIIM practice parameter for determinants of image quality in digital mammography.

    Google Scholar 

  35. Strudley CJ, Young KC, Warren LM. The role of imaging in screening special feature: full paper. Mammography cancer detection: comparison of single 8MP and pair of 5MP reporting monitors. Br J Radiol. 2018;91:20170246.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Krupinski EA. Diagnostic accuracy and visual search efficiency: single 8 MP vs. dual 5 MP displays. J Digit Imaging. 2017;30(2):144–7.

    Article  PubMed  Google Scholar 

  37. Yabuuchi H, Kawanami S, Kamitani T, Matsumura T, Yamasaki Y, Morishita J, Honda H. Detectability of BI-RADS category 3 or higher breast lesions and reading time on mammography: comparison between 5-MP and 8-MP LCD monitors. Acta Radiol. 2017;58(4):403–7.

    Article  PubMed  Google Scholar 

  38. Pisano ED, Gatsonis C, Hendrick E, Yaffe M, Baum JK, Acharyya S, Conant EF, Fajardo LL, Bassett L, D’Orsi C, Jong R. Diagnostic performance of digital versus film mammography for breast-cancer screening. N Engl J Med. 2005;353(17):1773–83.

    Article  CAS  PubMed  Google Scholar 

  39. Blume H. CRT-based display systems in radiology. In: SID symposium digest of technical papers, vol. 30, No. 1. Oxford: Blackwell Publishing Ltd; 1999. p. 968–71.

    Google Scholar 

  40. Bevins N, Flynn M, Silosky M, Marsh R, Walz-Flannigan A, Badano A. AAPM report 270: display quality assurance. American Association of Physicists in Medicine; 2019.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Krupinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krupinski, E.A., Storm, E.S. (2021). Viewing Images. In: Branstetter IV, B.F. (eds) Practical Imaging Informatics. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-1756-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1756-4_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-0716-1755-7

  • Online ISBN: 978-1-0716-1756-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics