Skip to main content

Improvement of Transfection with PepFects Using Organic and Inorganic Materials

  • Protocol
  • First Online:
Cell Penetrating Peptides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2383))

Abstract

Cell-penetrating peptides (CPPs) are a promising non-viral vector for gene and drug delivery. CPPs exhibit high cell transfection, and are biocompatible. They can be also conjugated with organic and inorganic nanomaterials, such as magnetic nanoparticles (MNPs), graphene oxide (GO), metal-organic frameworks (MOFs), and chitosan. Nanomaterials offered a high specific surface area and provided relatively straightforward methods to be modified with biomolecules including CPPs and oligonucleotides (ONs). Novel nanomaterials conjugates with CPP/ONs complexes are therefore of interest for cell transfection with high efficiency. In this chapter, we described a summary of the non-viral vectors consisting of CPPs and nanomaterials. The book chapter also included a protocol to generate hybrid biomaterials consisting of CPPs and nanoparticles (NPs) for the delivery of oligonucleotides. The conjugation of NPs with CPPs serves as an effective platform for gene therapy with high cell transfection efficiency. The protocol is simple, offers high cell transfection compared to the CPPs-ONs complexes, and can be used for further improvements using external stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CPPs:

Cell-penetrating peptides

GO:

Graphene oxide

HSA:

Human serum albumin

MNPs:

Magnetic nanoparticles

MOFs:

Metal-organic frameworks

mPEG:

Methoxy polyethylene glycol

MRI:

Magnetic resonance imaging

NIR:

Near-infrared

NP:

Nanoparticle

ON:

Oligonucleotide

PEI:

Polyethyleneimine

PFs:

PepFects

PL-PEG:

Phospholipid-based amphiphilic polymer

R8:

Octa-arginine

rGO:

Reduced graphene oxide

SAH:

Subarachnoid hemorrhage

SMAR1:

Scaffold matrix attachment region binding protein 1

TP10:

Transportan 10

ZIFs:

Zeolitic imidazolate frameworks

Refernces

  1. Li C, Samulski RJ (2020) Engineering adeno-associated virus vectors for gene therapy. Nat Rev Genet 21:255–272

    CAS  PubMed  Google Scholar 

  2. Wang D, Tai PWL, Gao G (2019) Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov 18:358–378

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Dowaidar M, Regberg J, Dobchev DA, Lehto T, Hällbrink M, Karelson M, Langel Ü (2017) Refinement of a quantitative structure–activity relationship model for prediction of cell-penetrating peptide based transfection systems. Int J Pept Res Ther 23:91–100

    CAS  Google Scholar 

  4. Kilk K, El-Andaloussi S, Järver P et al (2005) Evaluation of transportan 10 in PEI mediated plasmid delivery assay. J Control Release 103:511–523

    CAS  PubMed  Google Scholar 

  5. Mäe M, Myrberg H, El-Andaloussi S, Langel Ü (2009) Design of a tumor homing cell-penetrating peptide for drug delivery. Int J Pept Res Ther 15:11–15

    Google Scholar 

  6. Gestin M, Dowaidar M, Langel Ü (2017) Uptake mechanism of cell-penetrating peptides. Adv Exp Med Biol 1030:255–264

    CAS  PubMed  Google Scholar 

  7. Silva S, Almeida AJ, Vale N (2019) Combination of cell-penetrating peptides with nanoparticles for therapeutic application: a review. Biomol Ther 9:22

    Google Scholar 

  8. Abdelhamid HN, Wu H-F (2019) Nanoparticles advance drug delivery for cancer cells. In: Keservani RK, Sharma AK (eds) Nanoparticulate drug delivery systems. Apple Academic Press, New York, pp 121–150

    Google Scholar 

  9. Dowaidar M, Gestin M, Cerrato CP, Jafferali MH, Margus H, Kivistik PA, Ezzat K, Hallberg E, Pooga M, Hällbrink M, Langel Ü (2017) Role of autophagy in cell-penetrating peptide transfection model. Sci Rep 7:12635

    PubMed  PubMed Central  Google Scholar 

  10. Kumaran S, Abdelhamid HN, Hasan N, Wu H-F (2020) Cytotoxicity of palladium nanoparticles against Aspergillus niger. Nanosci Nanotechnol-Asia 10:80–85

    Google Scholar 

  11. Abdelhamid HN (2020) General methods for detection and evaluation of nanotoxicity. In: Nanotoxicity. Elsevier, pp 195–214

    Google Scholar 

  12. Abdelhamid HN (2020) Nanocytotoxicity using matrix-assisted laser desorption ionization mass spectrometry. Future Microbiol 15:385–387

    CAS  PubMed  Google Scholar 

  13. Abdelhamid HN, Wu H-F (2013) Probing the interactions of chitosan capped CdS quantum dots with pathogenic bacteria and their biosensing application. J Mater Chem B 1:6094–6106

    CAS  PubMed  Google Scholar 

  14. Abdelhamid HN, Wu H-F (2015) Proteomics analysis of the mode of antibacterial action of nanoparticles and their interactions with proteins. TrAC Trends Anal Chem 65:30–46

    CAS  Google Scholar 

  15. Giodini L, Lo RF, Campagnol D et al (2017) Nanocarriers in cancer clinical practice: a pharmacokinetic issue. Nanomed Nanotechnol Biol Med 13:583–599

    CAS  Google Scholar 

  16. Manaia EB, Abuçafy MP, Chiari-Andréo BGBG et al (2017) Physicochemical characterization of drug nanocarriers. Int J Nanomedicine 12:4991–5011

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen Z-Y, Abdelhamid HN, Wu H-F (2016) Effect of surface capping of quantum dots (CdTe) on proteomics. Rapid Commun Mass Spectrom 30:1403–1412

    CAS  PubMed  Google Scholar 

  18. Shastri L, Abdelhamid HN, Nawaz M, Wu H-F (2015) Synthesis, characterization and bifunctional applications of bidentate silver nanoparticle assisted single drop microextraction as a highly sensitive preconcentrating probe for protein analysis. RSC Adv 5:41595–41603

    CAS  Google Scholar 

  19. Abdelhamid HN, Wu H-F (2013) Multifunctional graphene magnetic nanosheet decorated with chitosan for highly sensitive detection of pathogenic bacteria. J Mater Chem B 1:3950–3961

    CAS  PubMed  Google Scholar 

  20. Gopal J, Abdelhamid HN, Hua P-Y, Wu H-F (2013) Chitosan nanomagnets for effective extraction and sensitive mass spectrometric detection of pathogenic bacterial endotoxin from human urine. J Mater Chem B 1:2463

    CAS  PubMed  Google Scholar 

  21. Abdelhamid HN (2018) Nanoparticle assisted laser desorption/ionization mass spectrometry for small molecule analytes. Microchim Acta 185:200

    Google Scholar 

  22. Abdelhamid HN (2017) Organic matrices, ionic liquids, and organic matrices@nanoparticles assisted laser desorption/ionization mass spectrometry. Trends Anal Chem 89:68–98

    CAS  Google Scholar 

  23. Abdelhamid HN, Talib A, Wu H-F (2015) Facile synthesis of water soluble silver ferrite (AgFeO2) nanoparticles and their biological application as antibacterial agents. RSC Adv 5:34594–34602

    CAS  Google Scholar 

  24. Bhaisare ML, Abdelhamid HN, Wu B-S, Wu H-F (2014) Rapid and direct MALDI-MS identification of pathogenic bacteria from blood using ionic liquid-modified magnetic nanoparticles (Fe3O4@SiO2). J Mater Chem B 2:4671–4683

    CAS  PubMed  Google Scholar 

  25. Abdelhamid HN, Wu H-F (2014) Facile synthesis of nano silver ferrite (AgFeO2) modified with chitosan applied for biothiol separation. Mater Sci Eng C 45:438–445

    Google Scholar 

  26. Abdelhamid HN, Wu HF (2017) Thymine chitosan nanomagnets for specific preconcentration of mercury (II) prior to analysis using SELDI-MS. Microchim Acta 184:1517–1527

    CAS  Google Scholar 

  27. Abdelhamid HN (2015) Delafossite nanoparticle as new functional materials: advances in energy, nanomedicine and environmental applications. Mater Sci Forum 832:28–53

    Google Scholar 

  28. Abdelhamid HN (2019) Nanoparticle-based surface assisted laser desorption ionization mass spectrometry: a review. Microchim Acta 186:682

    Google Scholar 

  29. Abdelhamid HN, Lin YC, Wu H-F (2017) Magnetic nanoparticle modified chitosan for surface enhanced laser desorption/ionization mass spectrometry of surfactants. RSC Adv 7:41585–41592

    CAS  Google Scholar 

  30. Abdelhamid HN (2016) Laser assisted synthesis, imaging and cancer therapy of magnetic nanoparticles. Mater Focus 5:305–323

    CAS  Google Scholar 

  31. Abdelhamid HN (2019) Nanoparticles assisted laser desorption/ionization mass spectrometry. In: Handbook of smart materials in analytical chemistry. Wiley, Chichester, pp 729–755

    Google Scholar 

  32. Laurent S, Forge D, Port M et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    CAS  PubMed  Google Scholar 

  33. Zhang J, Shin MC, David AE et al (2013) Long-circulating heparin-functionalized magnetic nanoparticles for potential application as a protein drug delivery platform. Mol Pharm 10:3892–3902

    CAS  PubMed  Google Scholar 

  34. Yang HY, Jang M-S, Li Y et al (2017) Multifunctional and redox-responsive self-assembled magnetic nanovectors for protein delivery and dual-modal imaging. ACS Appl Mater Interfaces 9:19184–19192

    CAS  PubMed  Google Scholar 

  35. Yao Q, Bermejo Gómez A, Su J et al (2015) Series of highly stable isoreticular lanthanide metal–organic frameworks with expanding pore size and tunable luminescent properties. Chem Mater 27:5332–5339

    CAS  Google Scholar 

  36. Abdelhamid HN, Wu H-F (2015) Synthesis and multifunctional applications of quantum nanobeads for label-free and selective metal chemosensing. RSC Adv 5

    Google Scholar 

  37. Abdelhamid HN, El-Bery HM, Metwally AA et al (2019) Synthesis of CdS-modified chitosan quantum dots for the drug delivery of Sesamol. Carbohydr Polym 214:90–99

    CAS  PubMed  Google Scholar 

  38. Shahnawaz Khan M, Abdelhamid HN, Wu H-F (2015) Near infrared (NIR) laser mediated surface activation of graphene oxide nanoflakes for efficient antibacterial, antifungal and wound healing treatment. Colloids Surf B Biointerfaces 127C:281–291

    Google Scholar 

  39. Abdelhamid HN, Wu H-F (2012) A method to detect metal-drug complexes and their interactions with pathogenic bacteria via graphene nanosheet assist laser desorption/ionization mass spectrometry and biosensors. Anal Chim Acta 751:94–104

    CAS  PubMed  Google Scholar 

  40. Manikandan M, Nasser Abdelhamid H, Talib A, Wu H-F (2014) Facile synthesis of gold nanohexagons on graphene templates in Raman spectroscopy for biosensing cancer and cancer stem cells. Biosens Bioelectron 55:180–186

    CAS  PubMed  Google Scholar 

  41. Nasser Abdelhamid H, Wu B-S, Wu H-F (2014) Graphene coated silica applied for high ionization matrix assisted laser desorption/ionization mass spectrometry: a novel approach for environmental and biomolecule analysis. Talanta 126:27–37

    CAS  PubMed  Google Scholar 

  42. Abdelhamid HN, Wu H-F (2015) Reduced graphene oxide conjugate thymine as a new probe for ultrasensitive and selective fluorometric determination of mercury(II) ions. Microchim Acta 182:1609–1617

    CAS  Google Scholar 

  43. Abdelhamid HN, Wu H-F (2014) Ultrasensitive, rapid, and selective detection of mercury using graphene assisted laser desorption/ionization mass spectrometry. J Am Soc Mass Spectrom 25:861–868

    CAS  PubMed  Google Scholar 

  44. Abdelhamid HN, Khan MS, Wu HF (2014) Graphene oxide as a nanocarrier for gramicidin (GOGD) for high antibacterial performance. RSC Adv 4:50035–50046

    CAS  Google Scholar 

  45. Wu B-S, Abdelhamid HN, Wu H-F (2014) Synthesis and antibacterial activities of graphene decorated with stannous dioxide. RSC Adv 4:3722

    CAS  Google Scholar 

  46. Ashour RM, Abdelhamid HN, Abdel-Magied AF et al (2017) Rare earth ions adsorption onto graphene oxide nanosheets. Solvent Extr Ion Exch 35:91–103

    CAS  Google Scholar 

  47. Hua P-Y, Manikandan M, Abdelhamid HN, Wu H-F (2014) Graphene nanoflakes as an efficient ionizing matrix for MALDI-MS based lipidomics of cancer cells and cancer stem cells. J Mater Chem B 2:7334–7343

    CAS  PubMed  Google Scholar 

  48. Hussein KH, Abdelhamid HN, Zou X, Woo H-M (2019) Ultrasonicated graphene oxide enhances bone and skin wound regeneration. Mater Sci Eng C 94:484–492

    CAS  Google Scholar 

  49. Abdelhamid HN, Wu H-F (2015) Synthesis of a highly dispersive sinapinic acid@graphene oxide (SA@GO) and its applications as a novel surface assisted laser desorption/ionization mass spectrometry for proteomics and pathogenic bacteria biosensing. Analyst 140:1555–1565

    CAS  PubMed  Google Scholar 

  50. Gopal J, Abdelhamid HN, Huang JH, Wu HF (2016) Nondestructive detection of the freshness of fruits and vegetables using gold and silver nanoparticle mediated graphene enhanced Raman spectroscopy. Sensors Actuators B Chem 224:413–424

    CAS  Google Scholar 

  51. Abdelhamid HN, Wu H-F (2019) Graphene and its derivatives as platforms for MALDI-MS. In: Stauber T (ed) Handbook of graphene 2, volume 2: physics, chemistry and biology. Scrivener Publishing, pp 273–290

    Google Scholar 

  52. Zhou X, Laroche F, Lamers GEM et al (2012) Ultra-small graphene oxide functionalized with polyethylenimine (PEI) for very efficient gene delivery in cell and zebrafish embryos. Nano Res 5:703–709

    CAS  Google Scholar 

  53. Feng L, Zhang S, Liu Z (2011) Graphene based gene transfection. Nanoscale 3:1252

    CAS  PubMed  Google Scholar 

  54. Yue H, Zhou X, Cheng M, Xing D (2018) Graphene oxide-mediated Cas9/sgRNA delivery for efficient genome editing. Nanoscale 10:1063–1071

    CAS  PubMed  Google Scholar 

  55. Zulfajri M, Abdelhamid HN, Sudewi S et al (2020) Plant part-derived carbon dots for biosensing. Biosensors 10:68. https://doi.org/10.3390/bios10060068

    Article  CAS  PubMed Central  Google Scholar 

  56. Abdelhamid HN, Talib A, Wu HF (2017) One pot synthesis of gold–carbon dots nanocomposite and its application for cytosensing of metals for cancer cells. Talanta 166:357–363

    CAS  PubMed  Google Scholar 

  57. Abdelhamid HN, Wu H-F (2013) Polymer dots for quantifying the total hydrophobic pathogenic lysates in a single drop. Colloids Surf B Biointerfaces 115C:51–60

    Google Scholar 

  58. Bhagat PN, Jadhav SH, Chattopadhyay S, Paknikar KM (2018) Carbon nanospheres mediated nuclear delivery of SMAR1 protein (DNA binding domain) controls breast tumor in mice model. Nanomedicine 13:353–372

    CAS  PubMed  Google Scholar 

  59. Emam HE, Abdelhamid HN, Abdelhameed RM (2018) Self-cleaned photoluminescent viscose fabric incorporated lanthanide-organic framework (Ln-MOF). Dyes Pigments 159:491–498

    CAS  Google Scholar 

  60. Yang Y, Shen K, Lin J et al (2016) A Zn-MOF constructed from electron-rich π-conjugated ligands with an interpenetrated graphene-like net as an efficient nitroaromatic sensor. RSC Adv 6:45475–45481

    CAS  Google Scholar 

  61. Zou X, Yao Q, Gómez AB, Su J, Pascanu V, Yun Y, Zheng H, Chen H, Liu L, Abdelhamid HN, Martín-Matute B (2016) A series of highly stable isoreticular lanthanide metal-organic frameworks with tunable luminescence properties solved by rotation electron diffraction and X-ray diffraction. Acta Cryst A A72:136

    Google Scholar 

  62. Abdelhamid HN, Wilk-Kozubek M, El-Zohry AM et al (2019) Luminescence properties of a family of lanthanide metal-organic frameworks. Microporous Mesoporous Mater 279:400–406

    CAS  Google Scholar 

  63. Abdelhamid HN (2019) Surfactant assisted synthesis of hierarchical porous metal-organic frameworks nanosheets. Nanotechnology 30:435601

    CAS  PubMed  Google Scholar 

  64. Abdelhamid HN (2020) Zinc hydroxide nitrate nanosheets conversion into hierarchical zeolitic imidazolate frameworks nanocomposite and their application for CO2 sorption. Mater Today Chem 15:100222

    Google Scholar 

  65. Kassem AA, Abdelhamid HN, Fouad DM, Ibrahim SA (2019) Metal-organic frameworks (MOFs) and MOFs-derived CuO@C for hydrogen generation from sodium borohydride. Int J Hydrog Energy 44:31230–31238

    CAS  Google Scholar 

  66. Goda MN, Abdelhamid HN, Said AE-AA (2020) Zirconium oxide sulfate-carbon (ZrOSO4@C) derived from carbonized UiO-66 for selective production of dimethyl ether. ACS Appl Mater Interfaces 12:646–653

    Google Scholar 

  67. Abdelhamid HN (2020) Salts induced formation of hierarchical porous ZIF-8 and their applications for CO2 sorption and hydrogen generation via NaBH 4 hydrolysis. Macromol Chem Phys 221:2000031

    Google Scholar 

  68. Abdellah AR, Abdelhamid HN, El-Adasy A-BAAM et al (2020) One-pot synthesis of hierarchical porous covalent organic frameworks and two-dimensional nanomaterials for selective removal of anionic dyes. J Environ Chem Eng 8:104054

    CAS  Google Scholar 

  69. Sultan S, Abdelhamid HN, Zou X, Mathew AP (2018) CelloMOF: nanocellulose enabled 3D printing of metal-organic frameworks. Adv Funct Mater 29(2):1805372

    Google Scholar 

  70. Abdelhamid HN, Huang Z, El-Zohry AM et al (2017) A fast and scalable approach for synthesis of hierarchical porous zeolitic imidazolate frameworks and one-pot encapsulation of target molecules. Inorg Chem 56:9139–9146

    CAS  PubMed  Google Scholar 

  71. Abdelhamid HN, Bermejo-Gómez A, Martín-Matute B, Zou X (2017) A water-stable lanthanide metal-organic framework for fluorimetric detection of ferric ions and tryptophan. Microchim Acta 184:3363–3371

    CAS  Google Scholar 

  72. Abdelhamid HN, Zou X (2018) Template-free and room temperature synthesis of hierarchical porous zeolitic imidazolate framework nanoparticles and their dye and CO2 sorption. Green Chem 20:1074–1084

    Google Scholar 

  73. Valencia L, Abdelhamid HN (2019) Nanocellulose leaf-like zeolitic imidazolate framework (ZIF-L) foams for selective capture of carbon dioxide. Carbohydr Polym 213:338–345

    CAS  PubMed  Google Scholar 

  74. Abdel-Magied AF, Abdelhamid HN, Ashour RM et al (2019) Hierarchical porous zeolitic imidazolate frameworks nanoparticles for efficient adsorption of rare-earth elements. Microporous Mesoporous Mater 278:175–184

    CAS  Google Scholar 

  75. Abdelhamid HN, El-Zohry AM, Cong J et al (2019) Towards implementing hierarchical porous zeolitic imidazolate frameworks in dye-sensitized solar cells. R Soc Open Sci 6:190723

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Abdelhamid HN (2020) Hierarchical porous ZIF-8 for hydrogen production via the hydrolysis of sodium borohydride. Dalt Trans 49:4416–4424

    CAS  Google Scholar 

  77. Abdelhamid HN (2020) Dye encapsulated hierarchical porous zeolitic imidazolate frameworks for carbon dioxide adsorption. J Environ Chem Eng 8:104008

    CAS  Google Scholar 

  78. Kassem AA, Abdelhamid HN, Fouad DM, Ibrahim SA (2020) Hydrogenation reduction of dyes using metal-organic framework-derived CuO@C. Microporous Mesoporous Mater 305:110340

    CAS  Google Scholar 

  79. Feng D, Liu T-F, Su J et al (2015) Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation. Nat Commun 6:5979

    PubMed  Google Scholar 

  80. Shieh F-K, Wang S-C, Yen C-I et al (2015) Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: size-selective sheltering of catalase in metal–organic framework microcrystals. J Am Chem Soc 137:4276–4279

    CAS  PubMed  Google Scholar 

  81. Li P, Moon S-Y, Guelta MA et al (2016) Encapsulation of a nerve agent detoxifying enzyme by a mesoporous zirconium metal–organic framework engenders thermal and long-term stability. J Am Chem Soc 138:8052–8055

    CAS  PubMed  Google Scholar 

  82. Zhang Y, Wang F, Ju E et al (2016) Metal-organic-framework-based vaccine platforms for enhanced systemic immune and memory response. Adv Funct Mater 26:6454–6461

    CAS  Google Scholar 

  83. Lian X, Erazo-Oliveras A, Pellois J-P, Zhou H-C (2017) High efficiency and long-term intracellular activity of an enzymatic nanofactory based on metal-organic frameworks. Nat Commun 8:2075

    PubMed  PubMed Central  Google Scholar 

  84. Wang S, Chen Y, Wang S et al (2019) DNA-functionalized metal–organic framework nanoparticles for intracellular delivery of proteins. J Am Chem Soc 141:2215–2219

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Yang X, Tang Q, Jiang Y et al (2019) Nanoscale ATP-responsive zeolitic imidazole framework-90 as a general platform for cytosolic protein delivery and genome editing. J Am Chem Soc 141:3782–3786

    CAS  PubMed  Google Scholar 

  86. Abdelhamid HN, Dowaidar M, Hällbrink M, Langel Ü (2020) Gene delivery using cell penetrating peptides-zeolitic imidazolate frameworks. Microporous Mesoporous Mater 300:110173

    CAS  Google Scholar 

  87. Dowaidar M, Abdelhamid HN, Hällbrink M et al (2017) Magnetic nanoparticle assisted self-assembly of cell penetrating peptides-oligonucleotides complexes for gene delivery. Sci Rep 7:9159

    PubMed  PubMed Central  Google Scholar 

  88. Dowaidar M, Nasser Abdelhamid H, Hällbrink M et al (2018) Chitosan enhances gene delivery of oligonucleotide complexes with magnetic nanoparticles–cell-penetrating peptide. J Biomater Appl 33:392–401

    CAS  PubMed  Google Scholar 

  89. Dowaidar M, Abdelhamid HN, Hällbrink M et al (2017) Graphene oxide nanosheets in complex with cell penetrating peptides for oligonucleotides delivery. Biochim Biophys Acta 1861:2334–2341

    CAS  Google Scholar 

  90. Abdelhamid HN, Dowaidar M, Hällbrink M, Langel Ü (2019) Cell penetrating peptides-hierarchical porous zeolitic imidazolate frameworks nanoparticles: an efficient gene delivery platform. SSRN Electron J 10:2139

    Google Scholar 

  91. Abdelhamid HN, Dowaidar M, Langel Ü (2020) Carbonized chitosan encapsulated hierarchical porous zeolitic imidazolate frameworks nanoparticles for gene delivery. Microporous Mesoporous Mater 302:110200

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by The Swedish Research Council, and Swedish Cancer Foundation, Sweden. H.N. Abdelhamid thanks the Ministry of Higher Education and Scientific Research (MHESR) and Institutional Review Board (IRB) of the Faculty of Science at Assiut University, Egypt for the support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dowaidar, M., Abdelhamid, H.N., Langel, Ü. (2022). Improvement of Transfection with PepFects Using Organic and Inorganic Materials. In: Langel, Ü. (eds) Cell Penetrating Peptides. Methods in Molecular Biology, vol 2383. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1752-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1752-6_35

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1751-9

  • Online ISBN: 978-1-0716-1752-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics