Skip to main content

Cell-Penetrating Peptides

  • Protocol
  • First Online:
Cell Penetrating Peptides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2383))

Abstract

In this introductory chapter, we first define cell-penetrating peptides (CPPs), give short overview of CPP history and discuss several aspects of CPP classification. Next section is devoted to the mechanism of CPP penetration into the cells, where direct and endocytic internalization of CPP is explained. Kinetics of internalization is discussed more extensively, since this topic is not discussed in other chapters of this book. At the end of this section some features of the thermodynamics of CPP interaction with the membrane is also presented. Finally, we present different cargoes that can be transferred into the cells by CPPs and briefly discuss the effect of cargo on the rate and efficiency of penetration into the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langel Ü (2002) Preface. Cell penetrating peptides processes and applications. CRC Press, Boca Raton, p 2002

    Book  Google Scholar 

  2. Zorko M, Langel Ü (2005) Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev 57(4):529–545. https://doi.org/10.1016/j.addr.2004.10.010

    Article  CAS  PubMed  Google Scholar 

  3. Pooga M, Hällbrink M, Zorko M, Langel Ü (1998) Cell penetration by transportan. FASEB J 12(1):67–77

    Article  CAS  Google Scholar 

  4. Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55(6):1189–1193

    Article  CAS  Google Scholar 

  5. Fawell S, Seery J, Daikh Y, Moore C, Chen LL, Pepinsky B, Barsoum J (1994) Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci U S A 91(2):664–668

    Article  CAS  Google Scholar 

  6. Green M, Ishino M, Loewenstein PM (1989) Mutational analysis of HIV-1 Tat minimal domain peptides: identification of trans-dominant mutants that suppress HIV-LTR-driven gene expression. Cell 58(1):215–223. https://doi.org/10.1016/0092-8674(89)90417-0

    Article  CAS  PubMed  Google Scholar 

  7. Derossi D, Joliot AH, Chassaing G, Prochiantz A (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 269(14):10444–10450

    Article  CAS  Google Scholar 

  8. Gautam A, Singh H, Tyagi A, Chaudhary K, Kumar R, Kapoor P, Raghava GP (2012) CPPsite: a curated database of cell penetrating peptides. Database 2012:bas015. https://doi.org/10.1093/database/bas015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Derakhshankhah H, Jafari S (2018) Cell penetrating peptides: a concise review with emphasis on biomedical applications. Biomed Pharmacother 108:1090–1096. https://doi.org/10.1016/j.biopha.2018.09.097

    Article  CAS  PubMed  Google Scholar 

  10. Kosuge M, Takeuchi T, Nakase I, Jones AT, Futaki S (2008) Cellular internalization and distribution of arginine-rich peptides as a function of extracellular peptide concentration, serum, and plasma membrane associated proteoglycans. Bioconjug Chem 19(3):656–664. https://doi.org/10.1021/bc700289w

    Article  CAS  PubMed  Google Scholar 

  11. Oehlke J, Scheller A, Wiesner B, Krause E, Beyermann M, Klauschenz E, Melzig M, Bienert M (1998) Cellular uptake of an alpha-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochim Biophys Acta 1414(1-2):127–139

    Article  CAS  Google Scholar 

  12. Gao C, Mao S, Ditzel HJ, Farnaes L, Wirsching P, Lerner RA, Janda KD (2002) A cell-penetrating peptide from a novel pVII-pIX phage-displayed random peptide library. Bioorg Med Chem 10(12):4057–4065

    Article  CAS  Google Scholar 

  13. Neves-Coelho S, Eleutério RP, Enguita FJ, Neves V, Castanho M (2017) A new noncanonical anionic peptide that translocates a cellular blood-brain barrier model. Molecules 22(10):1753. https://doi.org/10.3390/molecules22101753

    Article  CAS  PubMed Central  Google Scholar 

  14. Langel Ü (2019) CPP, cell-penetrating peptides. Springer Nature Singapore Pte Ltd. ISBN: 978-981-13-8747-0

    Book  Google Scholar 

  15. Howl J, Matou-Nasri S, West DC, Farquhar M, Slaninova J, Ostenson CG, Zorko M, Östlund P, Kumar S, Langel Ü, McKeating J, Jones S (2012) Bioportide: an emergent concept of bioactive cell-penetrating peptides. Cell Mol Life Sci 69(17):2951–2966. https://doi.org/10.1007/s00018-012-0979-4

    Article  CAS  PubMed  Google Scholar 

  16. Mitchell DJ, Kim DT, Steinman L, Fathman CG, Rothbard JB (2000) Polyarginine enters cells more efficiently than other polycationic homopolymers. J Pept Res 56(5):318–325. https://doi.org/10.1034/j.1399-3011.2000.00723.x

    Article  CAS  PubMed  Google Scholar 

  17. Morris MC, Vidal P, Chaloin L, Heitz F, Divita G (1997) A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Res 25(14):2730–2736

    Article  CAS  Google Scholar 

  18. Pooga M, Langel Ü (2015) Classes of cell-penetrating peptides. Methods Mol Biol 1324:3–28. https://doi.org/10.1007/978-1-4939-2806-4_1

    Article  PubMed  Google Scholar 

  19. Soomets U, Lindgren M, Gallet X, Hällbrink M, Elmquist A, Balaspiri L, Zorko M, Pooga M, Brasseur R, Langel Ü (2000) Deletion analogues of transportan. Biochim Biophys Acta 1467(1):165–176

    Article  CAS  Google Scholar 

  20. El-Andaloussi S, Johansson HJ, Holm T, Langel Ü (2007) A novel cell-penetrating peptide, M918, for efficient delivery of proteins and peptide nucleic acids. Mol Ther 15(10):1820–1826. https://doi.org/10.1038/sj.mt.6300255

    Article  CAS  PubMed  Google Scholar 

  21. Arukuusk P, Pärnaste L, Hällbrink M, Langel Ü (2015) PepFects and NickFects for the intracellular delivery of nucleic acids. Methods Mol Biol 1324:303–315. https://doi.org/10.1007/978-1-4939-2806-4_19

    Article  PubMed  Google Scholar 

  22. Arukuusk P, Pärnaste L, Oskolkov N, Copolovici DM, Margus H, Padari K, Moll K, Maslovskaja J, Tegova R, Kivi G, Tover A, Pooga M, Ustav M, Langel Ü (2013) New generation of efficient peptide-based vectors, NickFects, for the delivery of nucleic acids. Biochim Biophys Acta 1828(5):1365–1373. https://doi.org/10.1016/j.bbamem.2013.01.011

    Article  CAS  PubMed  Google Scholar 

  23. Oskolkov N, Arukuusk P, Copolovici D-M, Lindberg S, Margus H, Padari K, Pooga M, Langel Ü (2011) NickFects, phosphorylated derivatives of transportan 10 for cellular delivery of oligonucleotides. Int J Pep Res Therap 17:147–157

    Article  CAS  Google Scholar 

  24. Hällbrink M, Kilk K, Elmquist A, Lundberg P, Lindgren M, Jiang Y, Pooga M, Soomets U, Langel Ü (2005) Prediction of Cell-Penetrating Peptides. Int J Peptide Res Therap 11(4):249–259

    Article  Google Scholar 

  25. Pandey P, Patel V, George NV, Mallajosyula SS (2018) KELM-CPPpred: kernel extreme learning machine based prediction model for cell-penetrating peptides. J Proteome Res 17(9):3214–3222. https://doi.org/10.1021/acs.jproteome.8b00322

    Article  CAS  PubMed  Google Scholar 

  26. Wolfe JM, Fadzen CM, Choo ZN, Holden RL, Yao M, Hanson GJ, Pentelute BL (2018) Machine learning to predict cell-penetrating peptides for antisense delivery. ACS Cent Sci 4(4):512–520. https://doi.org/10.1021/acscentsci.8b00098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kumar V, Agrawal P, Kumar R, Bhalla S, Usmani SS, Varshney GC, Raghava GPS (2018) Prediction of cell-penetrating potential of modified peptides containing natural and chemically modified residues. Front Microbiol 9:725. https://doi.org/10.3389/fmicb.2018.00725

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fu X, Cai L, Zeng X, Zou Q (2020) StackCPPred: a stacking and pairwise energy content-based prediction of cell-penetrating peptides and their uptake efficiency. Bioinformatics 36(10):3028–3034. https://doi.org/10.1093/bioinformatics/btaa131

    Article  CAS  PubMed  Google Scholar 

  29. Kauffman WB, Guha S, Wimley WC (2018) Synthetic molecular evolution of hybrid cell penetrating peptides. Nat Commun 9(1):2568. https://doi.org/10.1038/s41467-018-04874-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Miao J, Guo H, Chen F, Zhao L, He L, Ou Y, Huang M, Zhang Y, Guo B, Cao Y, Huang Q (2016) Antibacterial effects of a cell-penetrating peptide isolated from kefir. J Agric Food Chem 22:22

    Google Scholar 

  31. Jobin ML, Blanchet M, Henry S, Chaignepain S, Manigand C, Castano S, Lecomte S, Burlina F, Sagan S, Alves ID (2015) The role of tryptophans on the cellular uptake and membrane interaction of arginine-rich cell penetrating peptides. Biochim Biophys Acta 1848(2):593–602. https://doi.org/10.1016/j.bbamem.2014.11.013

    Article  CAS  PubMed  Google Scholar 

  32. Chu D, Xu W, Pan R, Ding Y, Sui W, Chen P (2015) Rational modification of oligoarginine for highly efficient siRNA delivery: structure-activity relationship and mechanism of intracellular trafficking of siRNA. Nanomedicine 11(2):435–446. https://doi.org/10.1016/j.nano.2014.08.007

    Article  CAS  PubMed  Google Scholar 

  33. Elmquist A, Langel Ü (2003) In vitro uptake and stability study of pVEC and its all-D analog. Biol Chem 384(3):387–393. https://doi.org/10.1515/BC.2003.044

    Article  CAS  PubMed  Google Scholar 

  34. Rueping M, Mahajan Y, Sauer M, Seebach D (2002) Cellular uptake studies with beta-peptides. Chembiochem 3(2-3):257–259

    Article  CAS  Google Scholar 

  35. Mandity IM, Fulop F (2015) An overview of peptide and peptoid foldamers in medicinal chemistry. Expert Opin Drug Discov 10(11):1163–1177. https://doi.org/10.1517/17460441.2015.1076790

    Article  CAS  PubMed  Google Scholar 

  36. Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L, Rothbard JB (2000) The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci 97(24):13003–13008. https://doi.org/10.1073/pnas.97.24.13003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Crespo L, Sanclimens G, Montaner B, Pérez-Tomás R, Royo M, Pons M, Albericio F, Giralt E (2002) Peptide dendrimers based on polyproline helices. J Am Chem Soc 124(30):8876–8883. https://doi.org/10.1021/ja020364m

    Article  CAS  PubMed  Google Scholar 

  38. Pujals S, Giralt E (2008) Proline-rich, amphipathic cell-penetrating peptides. Adv Drug Deliv Rev 60(4–5):473–484. https://doi.org/10.1016/j.addr.2007.09.012

    Article  CAS  PubMed  Google Scholar 

  39. Andreev OA, Engelman DM, Reshetnyak YK (2010) pH-sensitive membrane peptides (pHLIPs) as a novel class of delivery agents. Mol Membr Biol 27(7):341–352. https://doi.org/10.3109/09687688.2010.509285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Futaki S, Ohashi W, Suzuki T, Niwa M, Tanaka S, Ueda K, Harashima H, Sugiura Y (2001) Stearylated arginine-rich peptides: a new class of transfection systems. Bioconjug Chem 12(6):1005–1011. https://doi.org/10.1021/bc015508l

    Article  CAS  PubMed  Google Scholar 

  41. Veiman KL, Mäger I, Ezzat K, Margus H, Lehto T, Langel K, Kurrikoff K, Arukuusk P, Suhorutsenko J, Padari K, Pooga M, Langel Ü (2013) PepFect14 peptide vector for efficient gene delivery in cell cultures. Mol Pharm 10(1):199–210. https://doi.org/10.1021/mp3003557

    Article  CAS  PubMed  Google Scholar 

  42. Yoshida T, Lai TC, Kwon GS, Sako K (2013) pH- and ion-sensitive polymers for drug delivery. Expert Opin Drug Deliv 10(11):1497–1513. https://doi.org/10.1517/17425247.2013.821978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bernal F, Tyler AF, Korsmeyer SJ, Walensky LD, Verdine GL (2007) Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide. J Am Chem Soc 129(9):2456–2457. https://doi.org/10.1021/ja0693587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yamashita H, Oba M, Misawa T, Tanaka M, Hattori T, Naito M, Kurihara M, Demizu Y (2016) A helix-stabilized cell-penetrating peptide as an intracellular delivery tool. Chembiochem 17(2):137–140

    Article  CAS  Google Scholar 

  45. Bode SA, Kruis IC, Adams HP, Boelens WC, Pruijn GJ, van Hest JC, Lowik DW (2017) Coiled-coil-mediated activation of oligoarginine cell-penetrating peptides. Chembiochem 18(2):185–188

    Article  CAS  Google Scholar 

  46. Van der Poorten O, Legrand B, Vezenkov LL, Garcia-Pindado J, Bettache N, Knuhtsen A, Pedersen DS, Sanchez-Navarro M, Martinez J, Teixido M, Garcia M, Tourwe D, Amblard M, Ballet S (2018) Indoloazepinone-constrained oligomers as cell-penetrating and blood-brain-barrier-permeating compounds. Chembiochem 19(7):696–705. https://doi.org/10.1002/cbic.201700678

    Article  CAS  PubMed  Google Scholar 

  47. Lättig-Tunnemann G, Prinz M, Hoffmann D, Behlke J, Palm-Apergi C, Morano I, Herce HD, Cardoso MC (2011) Backbone rigidity and static presentation of guanidinium groups increases cellular uptake of arginine-rich cell-penetrating peptides. Nat Commun 2:453. https://doi.org/10.1038/ncomms1459

    Article  CAS  PubMed  Google Scholar 

  48. Qian Z, Xu X, Amacher JF, Madden DR, Cormet-Boyaka E, Pei D (2015) Intracellular delivery of peptidyl ligands by reversible cyclization: discovery of a PDZ domain inhibitor that rescues CFTR activity. Angew Chem Int Ed Engl 54(20):5874–5878. https://doi.org/10.1002/anie.201411594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Laursen JS, Engel-Andreasen J, Olsen CA (2015) Beta-peptoid foldamers at last. Acc Chem Res 48(10):2696–2704. https://doi.org/10.1021/acs.accounts.5b00257

    Article  CAS  PubMed  Google Scholar 

  50. Bagnacani V, Franceschi V, Bassi M, Lomazzi M, Donofrio G, Sansone F, Casnati A, Ungaro R (2013) Arginine clustering on calix[4]arene macrocycles for improved cell penetration and DNA delivery. Nat Commun 4:1721. https://doi.org/10.1038/ncomms2721

    Article  CAS  PubMed  Google Scholar 

  51. Henriques Sónia T, Huang Y-H, Chaousis S, Sani M-A, Poth Aaron G, Separovic F, Craik David J (2015) The prototypic cyclotide kalata B1 has a unique mechanism of entering cells. Chem Biol 22(8):1087–1097. https://doi.org/10.1016/j.chembiol.2015.07.012

    Article  CAS  PubMed  Google Scholar 

  52. Peng ZH, Kopecek J (2015) Enhancing accumulation and penetration of HPMA copolymer-doxorubicin conjugates in 2D and 3D prostate cancer cells via iRGD conjugation with an MMP-2 cleavable spacer. J Am Chem Soc 137(21):6726–6729. https://doi.org/10.1021/jacs.5b00922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lian W, Jiang B, Qian Z, Pei D (2014) Cell-permeable bicyclic peptide inhibitors against intracellular proteins. J Am Chem Soc 136(28):9830–9833. https://doi.org/10.1021/ja503710n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liskamp RMJ (2014) Peptides: bicycling into cells. Nat Chem 6(10):855–857. https://doi.org/10.1038/nchem.2073

    Article  CAS  PubMed  Google Scholar 

  55. Ramos-Molina B, Lick AN, Nasrolahi Shirazi A, Oh D, Tiwari R, El-Sayed NS, Parang K, Lindberg I (2015) Cationic cell-penetrating peptides are potent furin inhibitors. PLoS One 10(6):e0130417. https://doi.org/10.1371/journal.pone.0130417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shirazi AN, El-Sayed NS, Tiwari RK, Tavakoli K, Parang K (2016) Cyclic peptide containing hydrophobic and positively charged residues as a drug delivery system for curcumin. Curr Drug Deliv 13(3):409–417

    Article  CAS  Google Scholar 

  57. Reynolds F, Weissleder R, Josephson L (2005) Protamine as an efficient membrane-translocating peptide. Bioconjug Chem 16(5):1240–1245. https://doi.org/10.1021/bc0501451

    Article  CAS  PubMed  Google Scholar 

  58. Rosenbluh J, Hariton-Gazal E, Dagan A, Rottem S, Graessmann A, Loyter A (2005) Translocation of histone proteins across lipid bilayers and Mycoplasma membranes. J Mol Biol 345(2):387–400. https://doi.org/10.1016/j.jmb.2004.10.046

    Article  CAS  PubMed  Google Scholar 

  59. Hansen M, Kilk K, Langel Ü (2008) Predicting cell-penetrating peptides. Adv Drug Deliv Rev 60(4-5):572–579. https://doi.org/10.1016/j.addr.2007.09.003

    Article  CAS  PubMed  Google Scholar 

  60. Howl J, Jones S (2008) Proteomimetic cell penetrating peptides. Int J Pept Res Ther 14(4):359–366. https://doi.org/10.1007/s10989-008-9135-2

    Article  CAS  Google Scholar 

  61. Jones S, Holm T, Mäger I, Langel Ü, Howl J (2010) Characterization of bioactive cell penetrating peptides from human cytochrome c: protein mimicry and the development of a novel apoptogenic agent. Chem Biol 17(7):735–744. https://doi.org/10.1016/j.chembiol.2010.05.018

    Article  CAS  PubMed  Google Scholar 

  62. Lukanowska M, Howl J, Jones S (2013) Bioportides: bioactive cell-penetrating peptides that modulate cellular dynamics. Biotechnol J 8(8):918–930. https://doi.org/10.1002/biot.201200335

    Article  CAS  PubMed  Google Scholar 

  63. Covic L, Gresser AL, Talavera J, Swift S, Kuliopulos A (2002) Activation and inhibition of G protein-coupled receptors by cell-penetrating membrane-tethered peptides. Proc Natl Acad Sci U S A 99(2):643–648. https://doi.org/10.1073/pnas.022460899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Colombo M, Mizzotti C, Masiero S, Kater MM, Pesaresi P (2015) Peptide aptamers: the versatile role of specific protein function inhibitors in plant biotechnology. J Integr Plant Biol 57(11):892–901

    Article  CAS  Google Scholar 

  65. Eiden LE (2005) Fusion polypeptides that inhibit exocytosis: fusing aptamer and cell-penetrating peptide technologies and pharmacologies. Mol Pharmacol 67(4):980–982. https://doi.org/10.1124/mol.105.011429

    Article  CAS  PubMed  Google Scholar 

  66. Borghouts C, Delis N, Brill B, Weiss A, Mack L, Lucks P, Groner B (2012) A membrane penetrating peptide aptamer inhibits STAT3 function and suppresses the growth of STAT3 addicted tumor cells. Jakstat 1(1):44–54. https://doi.org/10.4161/jkst.18947

    Article  PubMed  PubMed Central  Google Scholar 

  67. Mern DS, Hasskarl J, Burwinkel B (2010) Inhibition of Id proteins by a peptide aptamer induces cell-cycle arrest and apoptosis in ovarian cancer cells. Br J Cancer 103(8):1237–1244. https://doi.org/10.1038/sj.bjc.6605897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Alberici L, Roth L, Sugahara KN, Agemy L, Kotamraju VR, Teesalu T, Bordignon C, Traversari C, Rizzardi GP, Ruoslahti E (2013) De novo design of a tumor-penetrating peptide. Cancer Res 73(2):804–812. https://doi.org/10.1158/0008-5472.CAN-12-1668

    Article  CAS  PubMed  Google Scholar 

  69. Teesalu T, Sugahara KN, Ruoslahti E (2013) Tumor-penetrating peptides. Front Oncol 3:216

    Article  Google Scholar 

  70. Ruoslahti E (2017) Tumor penetrating peptides for improved drug delivery. Adv Drug Deliv Rev 110-111:3–12. https://doi.org/10.1016/j.addr.2016.03.008

    Article  CAS  PubMed  Google Scholar 

  71. Petrenko VA, Gillespie JW (2017) Paradigm shift in bacteriophage-mediated delivery of anticancer drugs: from targeted ‘magic bullets’ to self-navigated ‘magic missiles’. Expert Opin Drug Deliv 14(3):373–384. https://doi.org/10.1080/17425247.2016.1218463

    Article  CAS  PubMed  Google Scholar 

  72. Kang MH, Yoo HJ, Kwon YH, Yoon HY, Lee SG, Kim SR, Yeom DW, Kang MJ, Choi YW (2015) Design of multifunctional liposomal nanocarriers for folate receptor-specific intracellular drug delivery. Mol Pharm 12(12):4200–4213

    Article  CAS  Google Scholar 

  73. Zhang WQ, Yu KF, Zhong T, Luo LM, Du R, Ren W, Huang D, Song P, Li D, Zhao Y, Wang C, Zhang X (2015) Does ligand-receptor mediated competitive effect or penetrating effect of iRGD peptide when co-administration with iRGD-modified SSL? J Drug Target 23(10):897–909

    Article  CAS  Google Scholar 

  74. Sakai H, Ikeda Y, Honda T, Tanaka Y, Shiraishi K, Inui M (2014) A cell-penetrating phospholamban-specific RNA aptamer enhances Ca2+ transients and contractile function in cardiomyocytes. J Mol Cell Cardiol 76:177–185. https://doi.org/10.1016/j.yjmcc.2014.09.006

    Article  CAS  PubMed  Google Scholar 

  75. Hussain S, Rodriguez-Fernandez M, Braun GB, Doyle FJ 3rd, Ruoslahti E (2014) Quantity and accessibility for specific targeting of receptors in tumours. Sci Rep 4:5232

    Article  CAS  Google Scholar 

  76. Koo JH, Yoon H, Kim WJ, Lim S, Park HJ, Choi JM (2014) Cell membrane penetrating function of the nuclear localization sequence in human cytokine IL-1alpha. Mol Biol Rep 41(12):8117–8126. https://doi.org/10.1007/s11033-014-3711-7

    Article  CAS  PubMed  Google Scholar 

  77. Guo X, Chu X, Li W, Pan Q, You H (2013) Chondrogenic effect of precartilaginous stem cells following NLS-TAT cell penetrating peptide-assisted transfection of eukaryotic hTGFbeta3. J Cell Biochem 114(11):2588–2594. https://doi.org/10.1002/jcb.24606

    Article  CAS  PubMed  Google Scholar 

  78. Zhao K, Luo G, Giannelli S, Szeto HH (2005) Mitochondria-targeted peptide prevents mitochondrial depolarization and apoptosis induced by tert-butyl hydroperoxide in neuronal cell lines. Biochem Pharmacol 70(12):1796–1806. https://doi.org/10.1016/j.bcp.2005.08.022

    Article  CAS  PubMed  Google Scholar 

  79. Szeto HH, Schiller PW, Zhao K, Luo G (2005) Fluorescent dyes alter intracellular targeting and function of cell-penetrating tetrapeptides. FASEB J 19(1):118–120. https://doi.org/10.1096/fj.04-1982fje

    Article  CAS  PubMed  Google Scholar 

  80. Cerrato CP, Kivijärvi T, Tozzi R, Lehto T, Gestin M, Langel Ü (2020) Intracellular delivery of therapeutic antisense oligonucleotides targeting mRNA coding mitochondrial proteins by cell-penetrating peptides. J Mater Chem B 8(47):10825–10836. https://doi.org/10.1039/d0tb01106a

    Article  CAS  PubMed  Google Scholar 

  81. Cerrato CP, Pirisinu M, Vlachos EN, Langel Ü (2015) Novel cell-penetrating peptide targeting mitochondria. FASEB J 29(11):4589–4599. https://doi.org/10.1096/fj.14-269225

    Article  CAS  PubMed  Google Scholar 

  82. Lindgren M, Rosenthal-Aizman K, Saar K, Eiriksdottir E, Jiang Y, Sassian M, Östlund P, Hällbrink M, Langel Ü (2006) Overcoming methotrexate resistance in breast cancer tumour cells by the use of a new cell-penetrating peptide. Biochem Pharmacol 71(4):416–425. https://doi.org/10.1016/j.bcp.2005.10.048

    Article  CAS  PubMed  Google Scholar 

  83. Myrberg H, Zhang L, Mäe M, Langel Ü (2008) Design of a tumor-homing cell-penetrating peptide. Bioconjug Chem 19(1):70–75. https://doi.org/10.1021/bc0701139

    Article  CAS  PubMed  Google Scholar 

  84. Willmore AM, Simon-Gracia L, Toome K, Paiste P, Kotamraju VR, Molder T, Sugahara KN, Ruoslahti E, Braun GB, Teesalu T (2016) Targeted silver nanoparticles for ratiometric cell phenotyping. Nanoscale 8(17):9096–9101. https://doi.org/10.1039/c5nr07928d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ringhieri P, Diaferia C, Galdiero S, Palumbo R, Morelli G, Accardo A (2015) Liposomal doxorubicin doubly functionalized with CCK8 and R8 peptide sequences for selective intracellular drug delivery. J Pept Sci 21(5):415–425. https://doi.org/10.1002/psc.2759

    Article  CAS  PubMed  Google Scholar 

  86. Jiang T, Olson ES, Nguyen QT, Roy M, Jennings PA, Tsien RY (2004) Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc Natl Acad Sci U S A 101(51):17867–17872

    Article  CAS  Google Scholar 

  87. Nguyen QT, Olson ES, Aguilera TA, Jiang T, Scadeng M, Ellies LG, Tsien RY (2010) Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival. Proc Natl Acad Sci U S A 107(9):4317–4322. https://doi.org/10.1073/pnas.0910261107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Soler M, Gonzalez-Bartulos M, Figueras E, Massaguer A, Feliu L, Planas M, Ribas X, Costas M (2016) Delivering aminopyridine ligands into cancer cells through conjugation to the cell-penetrating peptide BP16. Org Biomol Chem 8:8

    Google Scholar 

  89. Yang Y, Xie X, Cai X, Mei X (2014) Preparation and characterization of photo-responsive cell-penetrating peptide-mediated nanostructured lipid carrier. J Drug Target 22(10):891–900. https://doi.org/10.3109/1061186X.2014.940589

    Article  CAS  PubMed  Google Scholar 

  90. Shi N-Q, Gao W, Xiang B, Qi X-R (2012) Enhancing cellular uptake of activable cell-penetrating peptide-doxorubicin conjugate by enzymatic cleavage. Int J Nanomedicine 7:1613–1621. https://doi.org/10.2147/IJN.S30104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ezzat K, Andaloussi SE, Zaghloul EM, Lehto T, Lindberg S, Moreno PM, Viola JR, Magdy T, Abdo R, Guterstam P, Sillard R, Hammond SM, Wood MJ, Arzumanov AA, Gait MJ, Smith CI, Hällbrink M, Langel Ü (2011) PepFect 14, a novel cell-penetrating peptide for oligonucleotide delivery in solution and as solid formulation. Nucleic Acids Res 39(12):5284–5298. https://doi.org/10.1093/nar/gkr072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Veiman KL, Kunnapuu K, Lehto T, Kiisholts K, Pärn K, Langel Ü, Kurrikoff K (2015) PEG shielded MMP sensitive CPPs for efficient and tumor specific gene delivery in vivo. J Control Release 209:238–247. https://doi.org/10.1016/j.jconrel.2015.04.038

    Article  CAS  PubMed  Google Scholar 

  93. Li H, He J, Yi H, Xiang G, Chen K, Fu B, Yang Y, Chen G (2015) siRNA suppression of hTERT using activatable cell-penetrating peptides in hepatoma cells. Biosci Rep 35(2):e00181

    Article  Google Scholar 

  94. Tansi F, Kallweit E, Kaether C, Kappe K, Schumann C, Hilger I, Reissmann S (2015) Internalization of near-infrared fluorescently labeled activatable cell-penetrating peptide and of proteins into human fibrosarcoma cell line HT-1080. J Cell Biochem 116(7):1222–1231. https://doi.org/10.1002/jcb.25075

    Article  CAS  PubMed  Google Scholar 

  95. Hyvonen M, Enbäck J, Huhtala T, Lammi J, Sihto H, Weisell J, Joensuu H, Rosenthal-Aizman K, El Andaloussi S, Langel Ü, Närvanen A, Bergers G, Laakkonen P (2014) Novel target for peptide-based imaging and treatment of brain tumors. Mol Cancer Ther 13(4):996–1007. https://doi.org/10.1158/1535-7163.MCT-13-0684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Eriste E, Kurrikoff K, Suhorutsenko J, Oskolkov N, Copolovici DM, Jones S, Laakkonen P, Howl J, Langel Ü (2013) Peptide-based glioma-targeted drug delivery vector gHoPe2. Bioconjug Chem 24(3):305–313. https://doi.org/10.1021/bc300370w

    Article  CAS  PubMed  Google Scholar 

  97. Youn P, Chen Y, Furgeson DY (2014) A myristoylated cell-penetrating peptide bearing a transferrin receptor-targeting sequence for neuro-targeted siRNA delivery. Mol Pharm 11(2):486–495. https://doi.org/10.1021/mp400446v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Freimann K, Arukuusk K, Kurrikoff K, Vasconselos LDF, Veiman K-L, Uusna J, Margus H, Garcia AT, Pooga M, Langel Ü (2016) Optimization of in vivo pDNA gene delivery with NickFect peptide vectors. J Control Release 241:135–143

    Article  CAS  Google Scholar 

  99. Freimann K, Arukuusk P, Kurrikoff K, Parnaste L, Raid R, Piirsoo A, Pooga M, Langel U (2018) Formulation of stable and homogeneous cell-penetrating peptide NF55 nanoparticles for efficient gene delivery in vivo. Mol Ther Nucleic Acids 10:28–35. https://doi.org/10.1016/j.omtn.2017.10.011

    Article  CAS  PubMed  Google Scholar 

  100. Gao H, Zhang S, Cao S, Yang Z, Pang Z, Jiang X (2014) Angiopep-2 and activatable cell-penetrating peptide dual-functionalized nanoparticles for systemic glioma-targeting delivery. Mol Pharm 11(8):2755–2763. https://doi.org/10.1021/mp500113p

    Article  CAS  PubMed  Google Scholar 

  101. van Duijnhoven SM, Robillard MS, Nicolay K, Grull H (2015) Development of radiolabeled membrane type-1 matrix metalloproteinase activatable cell penetrating peptide imaging probes. Molecules 20(7):12076–12092. https://doi.org/10.3390/molecules200712076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang HY, Chen JX, Sun YX, Deng JZ, Li C, Zhang XZ, Zhuo RX (2011) Construction of cell penetrating peptide vectors with N-terminal stearylated nuclear localization signal for targeted delivery of DNA into the cell nuclei. J Control Release 155(1):26–33. https://doi.org/10.1016/j.jconrel.2010.12.009

    Article  CAS  PubMed  Google Scholar 

  103. Chuah JA, Yoshizumi T, Kodama Y, Numata K (2015) Gene introduction into the mitochondria of Arabidopsis thaliana via peptide-based carriers. Sci Rep 5:7751. https://doi.org/10.1038/srep07751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fonseca SB, Pereira MP, Mourtada R, Gronda M, Horton KL, Hurren R, Minden MD, Schimmer AD, Kelley SO (2011) Rerouting chlorambucil to mitochondria combats drug deactivation and resistance in cancer cells. Chem Biol 18(4):445–453

    Article  CAS  Google Scholar 

  105. Lin R, Zhang P, Cheetham AG, Walston J, Abadir P, Cui H (2015) Dual peptide conjugation strategy for improved cellular uptake and mitochondria targeting. Bioconjug Chem 26(1):71–77. https://doi.org/10.1021/bc500408p

    Article  CAS  PubMed  Google Scholar 

  106. Yamada Y, Furukawa R, Harashima H (2016) A dual-ligand liposomal system composed of a cell-penetrating peptide and a mitochondrial RNA aptamer synergistically facilitates cellular uptake and mitochondrial targeting. J Pharm Sci 105(5):1705–1713

    Article  CAS  Google Scholar 

  107. Ruseska I, Zimmer A (2020) Internalization mechanisms of cell-penetrating peptides. Beilstein J Nanotechnol 11:101–123. https://doi.org/10.3762/bjnano.11.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Li Z, Zhang Y, Zhu D, Li S, Yu X, Zhao Y, Ouyang X, Xie Z, Li L (2017) Transporting carriers for intracellular targeting delivery via non-endocytic uptake pathways. Drug Deliv 24(suppl 1):45–55. https://doi.org/10.1080/10717544.2017.1391889

    Article  CAS  PubMed  Google Scholar 

  109. Futaki S, Nakase I (2017) Cell-surface interactions on arginine-rich cell-penetrating peptides allow for multiplex modes of internalization. Acc Chem Res 50(10):2449–2456. https://doi.org/10.1021/acs.accounts.7b00221

    Article  CAS  PubMed  Google Scholar 

  110. Murayama T, Masuda T, Afonin S, Kawano K, Takatani-Nakase T, Ida H, Takahashi Y, Fukuma T, Ulrich AS, Futaki S (2017) Loosening of lipid packing promotes oligoarginine entry into cells. Angew Chem Int Ed Engl 56(26):7644–7647. https://doi.org/10.1002/anie.201703578

    Article  CAS  PubMed  Google Scholar 

  111. Grasso G, Muscat S, Rebella M, Morbiducci U, Audenino A, Danani A, Deriu MA (2018) Cell penetrating peptide modulation of membrane biomechanics by molecular dynamics. J Biomech 73:137–144. https://doi.org/10.1016/j.jbiomech.2018.03.036

    Article  PubMed  Google Scholar 

  112. Saar K, Lindgren M, Hansen M, Eiriksdottir E, Jiang Y, Rosenthal-Aizman K, Sassian M, Langel Ü (2005) Cell-penetrating peptides: a comparative membrane toxicity study. Anal Biochem 345(1):55–65. https://doi.org/10.1016/j.ab.2005.07.033

    Article  CAS  PubMed  Google Scholar 

  113. Islam MZ, Sharmin S, Moniruzzaman M, Yamazaki M (2018) Elementary processes for the entry of cell-penetrating peptides into lipid bilayer vesicles and bacterial cells. Appl Microbiol Biotechnol 102(9):3879–3892. https://doi.org/10.1007/s00253-018-8889-5

    Article  CAS  PubMed  Google Scholar 

  114. Prochiantz A (1996) Getting hydrophilic compounds into cells: lessons from homeopeptides. Curr Opin Neurobiol 6(5):629–634. https://doi.org/10.1016/s0959-4388(96)80095-x

    Article  CAS  PubMed  Google Scholar 

  115. Kawamoto S, Takasu M, Miyakawa T, Morikawa R, Oda T, Futaki S, Nagao H (2011) Inverted micelle formation of cell-penetrating peptide studied by coarse-grained simulation: importance of attractive force between cell-penetrating peptides and lipid head group. J Chem Phys 134(9):095103. https://doi.org/10.1063/1.3555531

    Article  CAS  PubMed  Google Scholar 

  116. Walrant A, Cardon S, Burlina F, Sagan S (2017) Membrane crossing and membranotropic activity of cell-penetrating peptides: dangerous liaisons? Acc Chem Res 50(12):2968–2975. https://doi.org/10.1021/acs.accounts.7b00455

    Article  CAS  PubMed  Google Scholar 

  117. Verdurmen WPR, Mazlami M, Plückthun A (2017) A quantitative comparison of cytosolic delivery via different protein uptake systems. Sci Rep 7(1):13194. https://doi.org/10.1038/s41598-017-13469-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78:857–902

    Article  CAS  Google Scholar 

  119. Räägel H, Säälik P, Langel Ü, Pooga M (2011) Mapping of protein transduction pathways with fluorescent microscopy. Methods Mol Biol 683:165–179. https://doi.org/10.1007/978-1-60761-919-2_12

    Article  CAS  PubMed  Google Scholar 

  120. Pei D, Buyanova M (2019) Overcoming endosomal entrapment in drug delivery. Bioconjug Chem 30(2):273–283. https://doi.org/10.1021/acs.bioconjchem.8b00778

    Article  CAS  PubMed  Google Scholar 

  121. Belguise-Valladier P, Behr JP (2001) Nonviral gene delivery: towards artificial viruses. Cytotechnology 35(3):197–201. https://doi.org/10.1023/a:1013133605406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. El-Andaloussi S, Lehto T, Mäger I, Rosenthal-Aizman K, Oprea II, Simonson OE, Sork H, Ezzat K, Copolovici DM, Kurrikoff K, Viola JR, Zaghloul EM, Sillard R, Johansson HJ, Said Hassane F, Guterstam P, Suhorutsenko J, Moreno PM, Oskolkov N, Hälldin J, Tedebark U, Metspalu A, Lebleu B, Lehtio J, Smith CI, Langel Ü (2011) Design of a peptide-based vector, PepFect6, for efficient delivery of siRNA in cell culture and systemically in vivo. Nucleic Acids Res 39(9):3972–3987. https://doi.org/10.1093/nar/gkq1299

    Article  CAS  PubMed Central  Google Scholar 

  123. Rozema DB, Ekena K, Lewis DL, Loomis AG, Wolff JA (2003) Endosomolysis by masking of a membrane-active agent (EMMA) for cytoplasmic release of macromolecules. Bioconjug Chem 14(1):51–57. https://doi.org/10.1021/bc0255945

    Article  CAS  PubMed  Google Scholar 

  124. Li M, Tao Y, Shu Y, LaRochelle JR, Steinauer A, Thompson D, Schepartz A, Chen ZY, Liu DR (2015) Discovery and characterization of a peptide that enhances endosomal escape of delivered proteins in vitro and in vivo. J Am Chem Soc 137(44):14084–14093. https://doi.org/10.1021/jacs.5b05694

    Article  CAS  PubMed  Google Scholar 

  125. Takayama K, Hirose H, Tanaka G, Pujals S, Katayama S, Nakase I, Futaki S (2012) Effect of the attachment of a penetration accelerating sequence and the influence of hydrophobicity on octaarginine-mediated intracellular delivery. Mol Pharm 9(5):1222–1230. https://doi.org/10.1021/mp200518n

    Article  CAS  PubMed  Google Scholar 

  126. Lönn P, Kacsinta AD, Cui XS, Hamil AS, Kaulich M, Gogoi K, Dowdy SF (2016) Enhancing endosomal escape for intracellular delivery of macromolecular biologic therapeutics. Sci Rep 6:32301. https://doi.org/10.1038/srep32301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Allen J, Najjar K, Erazo-Oliveras A, Kondow-McConaghy HM, Brock DJ, Graham K, Hager EC, Marschall ALJ, Dübel S, Juliano RL, Pellois J-P (2019) Cytosolic delivery of macromolecules in live human cells using the combined endosomal escape activities of a small molecule and cell penetrating peptides. ACS Chem Biol 14(12):2641–2651. https://doi.org/10.1021/acschembio.9b00585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Brock DJ, Kondow-McConaghy H, Allen J, Brkljača Z, Kustigian L, Jiang M, Zhang J, Rye H, Vazdar M, Pellois JP (2020) Mechanism of cell penetration by permeabilization of late endosomes: interplay between a multivalent TAT peptide and bis(monoacylglycero)phosphate. Cell Chem Biol 27(10):1296–1307.e5. https://doi.org/10.1016/j.chembiol.2020.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kondow-McConaghy HM, Muthukrishnan N, Erazo-Oliveras A, Najjar K, Juliano RL, Pellois JP (2020) Impact of the endosomal escape activity of cell-penetrating peptides on the endocytic pathway. ACS Chem Biol 15(9):2355–2363. https://doi.org/10.1021/acschembio.0c00319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sahni A, Qian Z, Pei D (2020) Cell-penetrating peptides escape the endosome by inducing vesicle budding and collapse. ACS Chem Biol 15(9):2485–2492. https://doi.org/10.1021/acschembio.0c00478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Theodossiou TA, Gonçalves AR, Yannakopoulou K, Skarpen E, Berg K (2015) Photochemical internalization of tamoxifens transported by a “Trojan-horse” nanoconjugate into breast-cancer cell lines. Angew Chem Int Ed Engl 54(16):4885–4889. https://doi.org/10.1002/anie.201500183

    Article  CAS  PubMed  Google Scholar 

  132. Scheller A, Oehlke J, Wiesner B, Dathe M, Krause E, Beyermann M, Melzig M, Bienert M (1999) Structural requirements for cellular uptake of alpha-helical amphipathic peptides. J Pept Sci 5(4):185–194. https://doi.org/10.1002/(sici)1099-1387(199904)5:4<185::Aid-psc184>3.0.Co;2-9

    Article  CAS  PubMed  Google Scholar 

  133. Vives E, Richard JP, Rispal C, Lebleu B (2003) TAT peptide internalization: seeking the mechanism of entry. Curr Protein Pept Sci 4(2):125–132

    Article  CAS  Google Scholar 

  134. Drin G, Mazel M, Clair P, Mathieu D, Kaczorek M, Temsamani J (2001) Physico-chemical requirements for cellular uptake of pAntp peptide. Role of lipid-binding affinity. Eur J Biochem 268(5):1304–1314

    Article  CAS  Google Scholar 

  135. Hällbrink M, Floren A, Elmquist A, Pooga M, Bartfai T, Langel Ü (2001) Cargo delivery kinetics of cell-penetrating peptides. Biochim Biophys Acta 1515(2):101–109

    Article  Google Scholar 

  136. Mäger I, Eiriksdottir E, Langel K, El Andaloussi S, Langel Ü (2010) Assessing the uptake kinetics and internalization mechanisms of cell-penetrating peptides using a quenched fluorescence assay. Biochim Biophys Acta 1798(3):338–343. https://doi.org/10.1016/j.bbamem.2009.11.001

    Article  CAS  PubMed  Google Scholar 

  137. Eiriksdottir E, Mäger I, Lehto T, El Andaloussi S, Langel Ü (2010) Cellular internalization kinetics of (luciferin-)cell-penetrating peptide conjugates. Bioconjug Chem 21(9):1662–1672. https://doi.org/10.1021/bc100174y

    Article  CAS  PubMed  Google Scholar 

  138. Jiao CY, Delaroche D, Burlina F, Alves ID, Chassaing G, Sagan S (2009) Translocation and endocytosis for cell-penetrating peptide internalization. J Biol Chem 284(49):33957–33965. https://doi.org/10.1074/jbc.M109.056309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Rodrigues M, de la Torre BG, Andreu D, Santos NC (2013) Kinetic uptake profiles of cell penetrating peptides in lymphocytes and monocytes. Biochim Biophys Acta 1830(10):4554–4563. https://doi.org/10.1016/j.bbagen.2013.05.020

    Article  CAS  PubMed  Google Scholar 

  140. Marchione R, Dayde D, Lenormand JL, Cornet M (2014) ZEBRA cell-penetrating peptide as an efficient delivery system in Candida albicans. Biotechnol J 9(8):1088–1094. https://doi.org/10.1002/biot.201300505

    Article  CAS  PubMed  Google Scholar 

  141. Zhang X, Brossas JY, Parizot C, Zini JM, Rebollo A (2018) Identification and characterization of novel enhanced cell penetrating peptides for anti-cancer cargo delivery. Oncotarget 9(5):5944–5957. https://doi.org/10.18632/oncotarget.23179

    Article  PubMed  Google Scholar 

  142. Ramaker K, Henkel M, Krause T, Röckendorf N, Frey A (2018) Cell penetrating peptides: a comparative transport analysis for 474 sequence motifs. Drug Deliv 25(1):928–937. https://doi.org/10.1080/10717544.2018.1458921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Oh JH, Chong SE, Nam S, Hyun S, Choi S, Gye H, Jang S, Jang J, Hwang SW, Yu J, Lee Y (2018) Multimeric amphipathic α-helical sequences for rapid and efficient intracellular protein transport at nanomolar concentrations. Adv Sci 5(8):1800240. https://doi.org/10.1002/advs.201800240

    Article  CAS  Google Scholar 

  144. Brock DJ, Kustigian L, Jiang M, Graham K, Wang TY, Erazo-Oliveras A, Najjar K, Zhang J, Rye H, Pellois JP (2018) Efficient cell delivery mediated by lipid-specific endosomal escape of supercharged branched peptides. Traffic 19(6):421–435. https://doi.org/10.1111/tra.12566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hu Y, Liu X, Sinha SK, Patel S (2014) Translocation thermodynamics of linear and cyclic nonaarginine into model DPPC bilayer via coarse-grained molecular dynamics simulation: implications of pore formation and nonadditivity. J Phys Chem B 118(10):2670–2682. https://doi.org/10.1021/jp412600e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Yao C, Kang Z, Yu B, Chen Q, Liu Y, Wang Q (2019) All-factor analysis and correlations on the transmembrane process for arginine-rich cell-penetrating peptides. Langmuir 35(28):9286–9296. https://doi.org/10.1021/acs.langmuir.9b01169

    Article  CAS  PubMed  Google Scholar 

  147. Smirnova YG, Risselada HJ, Müller M (2019) Thermodynamically reversible paths of the first fusion intermediate reveal an important role for membrane anchors of fusion proteins. Proc Natl Acad Sci U S A 116(7):2571–2576. https://doi.org/10.1073/pnas.1818200116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ramírez PG, Del Pópolo MG, Vila JA, Longo GS (2020) Thermodynamics of cell penetrating peptides on lipid membranes: sequence and membrane acidity regulate surface binding. Phys Chem Chem Phys 22(40):23399–23410. https://doi.org/10.1039/d0cp02770g

    Article  CAS  PubMed  Google Scholar 

  149. Kabelka I, Vácha R (2018) Optimal hydrophobicity and reorientation of amphiphilic peptides translocating through membrane. Biophys J 115(6):1045–1054. https://doi.org/10.1016/j.bpj.2018.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Via MA, Klug J, Wilke N, Mayorga LS, Del Pópolo MG (2018) The interfacial electrostatic potential modulates the insertion of cell-penetrating peptides into lipid bilayers. Phys Chem Chem Phys 20(7):5180–5189. https://doi.org/10.1039/c7cp07243k

    Article  CAS  PubMed  Google Scholar 

  151. Falanga A, Lombardi L, Galdiero E, Genio VD, Galdiero S (2020) The world of cell penetrating: the future of medical applications. Future Med Chem 12(15):1431–1446. https://doi.org/10.4155/fmc-2020-0140

    Article  CAS  PubMed  Google Scholar 

  152. He Y, Li F, Huang Y (2018) Smart cell-penetrating peptide-based techniques for intracellular delivery of therapeutic macromolecules. Adv Protein Chem Struct Biol 112:183–220. https://doi.org/10.1016/bs.apcsb.2018.01.004

    Article  CAS  PubMed  Google Scholar 

  153. Borrelli A, Tornesello AL, Tornesello ML, Buonaguro FM (2018) Cell penetrating peptides as molecular carriers for anti-cancer agents. Molecules 23(2):295. https://doi.org/10.3390/molecules23020295

    Article  CAS  PubMed Central  Google Scholar 

  154. Via MA, Wilke N, Mayorga LS, Del Pópolo MG (2020) Surface charge density and fatty acids enhance the membrane permeation rate of CPP-cargo complexes. Soft Matter 16(43):9890–9898. https://doi.org/10.1039/d0sm00673d

    Article  CAS  PubMed  Google Scholar 

  155. Bhosle GS, Fernandes M (2017) (R-X-R)(4)-motif peptides containing conformationally constrained cyclohexane-derived spacers: effect on cellular uptake. ChemMedChem 12(21):1743–1747. https://doi.org/10.1002/cmdc.201700498

    Article  CAS  PubMed  Google Scholar 

  156. Shi NQ, Li Y, Zhang Y, Shen N, Qi L, Wang SR, Qi XR (2017) Intelligent “peptide-gathering mechanical arm” Tames Wild “Trojan-Horse” peptides for the controlled delivery of cancer nanotherapeutics. ACS Appl Mater Interfaces 9(48):41767–41781. https://doi.org/10.1021/acsami.7b15523

    Article  CAS  PubMed  Google Scholar 

  157. Chen K, Pei D (2020) Engineering cell-permeable proteins through insertion of cell-penetrating motifs into surface loops. ACS Chem Biol 15(9):2568–2576. https://doi.org/10.1021/acschembio.0c00593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Tai W (2019) Current aspects of siRNA bioconjugate for in vitro and in vivo delivery. Molecules 24(12):2211. https://doi.org/10.3390/molecules24122211

    Article  CAS  PubMed Central  Google Scholar 

  159. McClorey G, Banerjee S (2018) Cell-penetrating peptides to enhance delivery of oligonucleotide-based therapeutics. Biomedicine 6(2):51. https://doi.org/10.3390/biomedicines6020051

    Article  CAS  Google Scholar 

  160. Shi Y, Conde J, Azevedo HS (2017) Empowering the potential of cell-penetrating peptides for targeted intracellular delivery via molecular self-assembly. Adv Exp Med Biol 1030:265–278. https://doi.org/10.1007/978-3-319-66095-0_12

    Article  CAS  PubMed  Google Scholar 

  161. Tayo LL (2017) Stimuli-responsive nanocarriers for intracellular delivery. Biophys Rev 9(6):931–940. https://doi.org/10.1007/s12551-017-0341-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Chiarpotti MV, Longo GS, Del Pópolo MG (2020) Nanoparticles modified with cell penetrating peptides: assessing adsorption on membranes containing acidic lipids. Colloids Surf B Biointerfaces 197:111373. https://doi.org/10.1016/j.colsurfb.2020.111373

    Article  CAS  PubMed  Google Scholar 

  163. Gessner I, Neundorf I (2020) Nanoparticles modified with cell-penetrating peptides: conjugation mechanisms, physicochemical properties, and application in cancer diagnosis and therapy. Int J Mol Sci 21(7):2536. https://doi.org/10.3390/ijms21072536

    Article  CAS  PubMed Central  Google Scholar 

  164. Kurrikoff K, Langel U (2019) Recent CPP-based applications in medicine. Expert Opin Drug Deliv 16:1–9. https://doi.org/10.1080/17425247.2019.1665021

    Article  CAS  Google Scholar 

  165. Kurrikoff K, Vunk B, Langel Ü (2020) Status update in the use of cell-penetrating peptides for the delivery of macromolecular therapeutics. Expert Opin Biol Ther 21:1–10. https://doi.org/10.1080/14712598.2021.1823368

    Article  CAS  Google Scholar 

  166. Xie J, Bi Y, Zhang H, Dong S, Teng L, Lee RJ, Yang Z (2020) Cell-penetrating peptides in diagnosis and treatment of human diseases: from preclinical research to clinical application. Front Pharmacol 11:697. https://doi.org/10.3389/fphar.2020.00697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Gomes Dos Reis L, Traini D (2020) Advances in the use of cell penetrating peptides for respiratory drug delivery. Expert Opin Drug Deliv 17(5):647–664. https://doi.org/10.1080/17425247.2020.1739646

    Article  CAS  PubMed  Google Scholar 

  168. Thagun C, Motoda Y, Kigawa T, Kodama Y, Numata K (2020) Simultaneous introduction of multiple biomacromolecules into plant cells using a cell-penetrating peptide nanocarrier. Nanoscale 12(36):18844–18856. https://doi.org/10.1039/d0nr04718j

    Article  CAS  PubMed  Google Scholar 

  169. Méndez-Ardoy A, Lostalé-Seijo I, Montenegro J (2019) Where in the cell is our cargo? Methods currently used to study intracellular cytosolic localisation. Chembiochem 20(4):488–498. https://doi.org/10.1002/cbic.201800390

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matjaž Zorko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zorko, M., Langel, Ü. (2022). Cell-Penetrating Peptides. In: Langel, Ü. (eds) Cell Penetrating Peptides. Methods in Molecular Biology, vol 2383. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1752-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1752-6_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1751-9

  • Online ISBN: 978-1-0716-1752-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics