Skip to main content

Environmental Enrichment and the Effects on Drug Abuse Vulnerability: The Last Ten Years

  • Protocol
  • First Online:
Methods for Preclinical Research in Addiction

Part of the book series: Neuromethods ((NM,volume 174))

Abstract

Environmental enrichment in rats during development has been shown to reliably alter the sensitivity to various drugs of abuse. The current chapter will attempt to summarize new research that has come out investigating the effects of environmental enrichment on different drugs of abuse in the last 10 years. At the same time the chapter also aims to give a detailed description of the methods we employ in the environmental enrichment model used in our laboratory. We focused on details in the different the use of the environmental conditions that are often not reported in peer-reviewed publications. The review of studies conducted in the past decade indicated that studies continue to confirm that animals raised in enriched conditions show a protective effect in the behavioral sensitivity to different drugs of abuse relative to the impoverished condition counterparts. Studies focusing on changes in the nervous system indicate changes in mesolimbic structures as a result of enrichment, areas like the NAcc, VTA, and the bed nucleus of the stria terminalis. There are also alterations in the HPA-axis in enriched vs. impoverished animals that plays a role in differences seen in stimulant self-administration. Future studies using the environmental enrichment model should focus on understudied drugs like cannabinoids, opiates, and nicotine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stairs DJ, Bardo MT (2009) Neurobehavioral effects of environmental enrichment and drug abuse vulnerability. Pharmacol Biochem Behav 92(3):377–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Simpson J, Kelly JP (2011) The impact of environmental enrichment in laboratory rats--behavioural and neurochemical aspects. Behav Brain Res 222(1):246–264

    Article  CAS  PubMed  Google Scholar 

  3. Solinas M et al (2010) Prevention and treatment of drug addiction by environmental enrichment. Prog Neurobiol 92(4):572–592

    Article  CAS  PubMed  Google Scholar 

  4. Gill MJ, Arnold JC, Cain ME (2012) Impact of mGluR5 during amphetamine-induced hyperactivity and conditioned hyperactivity in differentially reared rats. Psychopharmacology 221(2):227–237

    Article  CAS  PubMed  Google Scholar 

  5. Arndt DL, Arnold JC, Cain ME (2014) The effects of mGluR2/3 activation on acute and repeated amphetamine-induced locomotor activity in differentially reared male rats. Exp Clin Psychopharmacol 22(3):257–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gill MJ, Weiss ML, Cain ME (2014) Effects of differential rearing on amphetamine-induced c-fos expression in rats. Drug Alcohol Depend 145:231–234

    Article  CAS  PubMed  Google Scholar 

  7. Garcia EJ et al (2017) Differential housing and novelty response: protection and risk from locomotor sensitization. Pharmacol Biochem Behav 154:20–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Adams E et al (2013) Effects of environmental enrichment on nicotine-induced sensitization and cross-sensitization to D-amphetamine in rats. Drug Alcohol Depend 129(3):247–253

    Article  CAS  PubMed  Google Scholar 

  9. Wooters TE et al (2011) Effect of environmental enrichment on methylphenidate-induced locomotion and dopamine transporter dynamics. Behav Brain Res 219(1):98–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gill KE et al (2013) The effects of rearing environment and chronic methylphenidate administration on behavior and dopamine receptors in adolescent rats. Brain Res 1527:67–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Starosciak AK et al (2012) Differential alteration of the effects of MDMA (ecstasy) on locomotor activity and cocaine conditioned place preference in male adolescent rats by social and environmental enrichment. Psychopharmacology 224(1):101–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hofford RS et al (2014) Environmental enrichment reduces methamphetamine cue-induced reinstatement but does not alter methamphetamine reward or VMAT2 function. Behav Brain Res 270:151–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thiriet N et al (2011) Environmental enrichment does not reduce the rewarding and neurotoxic effects of methamphetamine. Neurotox Res 19(1):172–182

    Article  CAS  PubMed  Google Scholar 

  14. Yates JR et al (2013) Concurrent choice for social interaction and amphetamine using conditioned place preference in rats: effects of age and housing condition. Drug Alcohol Depend 129(3):240–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Arndt DL et al (2015) Environmental condition alters amphetamine self-administration: role of the MGluR(5) receptor and schedule of reinforcement. Psychopharmacology 232(20):3741–3752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stairs DJ, Prendergast MA, Bardo MT (2011) Environmental-induced differences in corticosterone and glucocorticoid receptor blockade of amphetamine self-administration in rats. Psychopharmacology 218(1):293–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stairs DJ et al (2017) Effects of environmental enrichment on d-amphetamine self-administration following nicotine exposure. Exp Clin Psychopharmacol 25(5):393–401

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wang R et al (2018) Environmental enrichment reverses increased addiction risk caused by prenatal ethanol exposure. Drug Alcohol Depend 191:343–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lu X et al (2012) The effects of rearing condition on methamphetamine self-administration and cue-induced drug seeking. Drug Alcohol Depend 124(3):288–298

    Article  CAS  PubMed  Google Scholar 

  20. Alvers KM et al (2012) Environmental enrichment during development decreases intravenous self-administration of methylphenidate at low unit doses in rats. Behav Pharmacol 23(7):650–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sikora M et al (2018) Generalization of effects of environmental enrichment on seeking for different classes of drugs of abuse. Behav Brain Res 341:109–113

    Article  PubMed  Google Scholar 

  22. Green TA et al (2010) Environmental enrichment produces a behavioral phenotype mediated by low cyclic adenosine monophosphate response element binding (CREB) activity in the nucleus accumbens. Biol Psychiatry 67(1):28–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nader J et al (2012) Loss of environmental enrichment increases vulnerability to cocaine addiction. Neuropsychopharmacology 37(7):1579–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chauvet C et al (2011) Brain regions associated with the reversal of cocaine conditioned place preference by environmental enrichment. Neuroscience 184:88–96

    Article  CAS  PubMed  Google Scholar 

  25. Puhl MD et al (2012) Environmental enrichment protects against the acquisition of cocaine self-administration in adult male rats, but does not eliminate avoidance of a drug-associated saccharin cue. Behav Pharmacol 23(1):43–53

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gipson CD et al (2011) Effect of environmental enrichment on escalation of cocaine self-administration in rats. Psychopharmacology 214(2):557–566

    Article  CAS  PubMed  Google Scholar 

  27. Ranaldi R et al (2011) Environmental enrichment, administered after establishment of cocaine self-administration, reduces lever pressing in extinction and during a cocaine context renewal test. Behav Pharmacol 22(4):347–353

    Article  CAS  PubMed  Google Scholar 

  28. Chauvet C et al (2009) Environmental enrichment reduces cocaine seeking and reinstatement induced by cues and stress but not by cocaine. Neuropsychopharmacology 34(13):2767–2778

    Article  PubMed  Google Scholar 

  29. Chauvet C et al (2012) Effects of environmental enrichment on the incubation of cocaine craving. Neuropharmacology 63(4):635–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thiel KJ et al (2011) The interactive effects of environmental enrichment and extinction interventions in attenuating cue-elicited cocaine-seeking behavior in rats. Pharmacol Biochem Behav 97(3):595–602

    Article  CAS  PubMed  Google Scholar 

  31. Thiel KJ et al (2012) Environmental enrichment counters cocaine abstinence-induced stress and brain reactivity to cocaine cues but fails to prevent the incubation effect. Addict Biol 17(2):365–377

    Article  CAS  PubMed  Google Scholar 

  32. Thiel KJ et al (2010) Environmental living conditions introduced during forced abstinence alter cocaine-seeking behavior and Fos protein expression. Neuroscience 171(4):1187–1196

    Article  CAS  PubMed  Google Scholar 

  33. Thiel KJ et al (2009) Anti-craving effects of environmental enrichment. Int J Neuropsychopharmacol 12(9):1151–1156

    Article  PubMed  Google Scholar 

  34. Hofford RS, Prendergast MA, Bardo MT (2015) Pharmacological manipulation of glucocorticoid receptors differentially affects cocaine self-administration in environmentally enriched and isolated rats. Behav Brain Res 283:196–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hofford RS, Prendergast MA, Bardo MT (2018) Modified single prolonged stress reduces cocaine self-administration during acquisition regardless of rearing environment. Behav Brain Res 338:143–152

    Article  CAS  PubMed  Google Scholar 

  36. Stairs DJ et al (2016) Environmental enrichment and nicotine addiction. In: Preedy VR (ed) Neuropathology of drug addictions and substance misuse; Volume 1: Common substances of abuse/tobacco, alcohol, cannabinoids and opioids. Academic Press, London

    Google Scholar 

  37. Coolon RA, Cain ME (2009) Effects of mecamylamine on nicotine-induced conditioned hyperactivity and sensitization in differentially reared rats. Pharmacol Biochem Behav 93(1):59–66

    Article  CAS  PubMed  Google Scholar 

  38. Hamilton KR et al (2014) Environmental enrichment attenuates nicotine behavioral sensitization in male and female rats. Exp Clin Psychopharmacol 22(4):356–363

    Article  PubMed  Google Scholar 

  39. Gomez AM et al (2015) Effects of environmental enrichment on ERK1/2 phosphorylation in the rat prefrontal cortex following nicotine-induced sensitization or nicotine self-administration. Eur J Neurosci 41(1):109–119

    Article  PubMed  Google Scholar 

  40. Ewin SE, Kangiser MM, Stairs DJ (2015) The effects of environmental enrichment on nicotine condition place preference in male rats. Exp Clin Psychopharmacol 23(5):387–394

    Article  CAS  PubMed  Google Scholar 

  41. Nawaz A et al (2017) Enriched environment palliates nicotine-induced addiction and associated neurobehavioral deficits in rats. Pak J Pharm Sci 30(6 Suppl):2375–2381

    PubMed  Google Scholar 

  42. Venebra-Munoz A et al (2014) Enriched environment attenuates nicotine self-administration and induces changes in DeltaFosB expression in the rat prefrontal cortex and nucleus accumbens. Neuroreport 25(9):688–692

    Article  CAS  PubMed  Google Scholar 

  43. Bockman CS et al (2018) Nicotine drug discrimination and nicotinic acetylcholine receptors in differentially reared rats. Psychopharmacology 235(5):1415–1426

    Article  CAS  PubMed  Google Scholar 

  44. Galaj E, Manuszak M, Ranaldi R (2016) Environmental enrichment as a potential intervention for heroin seeking. Drug Alcohol Depend 163:195–201

    Article  CAS  PubMed  Google Scholar 

  45. Hofford RS et al (2017) Effects of environmental enrichment on self-administration of the short-acting opioid remifentanil in male rats. Psychopharmacology 234(23–24):3499–3506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. de Carvalho CR et al (2010) Environmental enrichment reduces the impact of novelty and motivational properties of ethanol in spontaneously hypertensive rats. Behav Brain Res 208(1):231–236

    Article  PubMed  Google Scholar 

  47. Li X et al (2015) Environmental enrichment blocks reinstatement of ethanol-induced conditioned place preference in mice. Neurosci Lett 599:92–96

    Article  CAS  PubMed  Google Scholar 

  48. Chappell AM et al (2013) Adolescent rearing conditions influence the relationship between initial anxiety-like behavior and ethanol drinking in male Long Evans rats. Alcohol Clin Exp Res 37(Suppl 1):E394–E403

    Article  PubMed  Google Scholar 

  49. Deehan GA Jr et al (2011) Differential rearing conditions and alcohol-preferring rats: consumption of and operant responding for ethanol. Behav Neurosci 125(2):184–193

    Article  CAS  PubMed  Google Scholar 

  50. El Rawas R et al (2011) Early exposure to environmental enrichment alters the expression of genes of the endocannabinoid system. Brain Res 1390:80–89

    Article  PubMed  Google Scholar 

  51. Javadi-Paydar M et al (2019) Effects of nicotine and THC vapor inhalation administered by an electronic nicotine delivery system (ENDS) in male rats. Drug Alcohol Depend 198:54–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wakeford AGP et al (2017) The effects of cannabidiol (CBD) on Delta(9)-tetrahydrocannabinol (THC) self-administration in male and female Long-Evans rats. Exp Clin Psychopharmacol 25(4):242–248

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dustin J. Stairs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stairs, D.J., Hanson, T., Kellerman, K. (2022). Environmental Enrichment and the Effects on Drug Abuse Vulnerability: The Last Ten Years. In: Aguilar, M.A. (eds) Methods for Preclinical Research in Addiction. Neuromethods, vol 174. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1748-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1748-9_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1747-2

  • Online ISBN: 978-1-0716-1748-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics