Skip to main content

Preclinical Models of Relapse to Psychostimulants Induced by Environmental Stimuli

  • Protocol
  • First Online:
Methods for Preclinical Research in Addiction

Part of the book series: Neuromethods ((NM,volume 174))

  • 458 Accesses

Abstract

A major aim of addiction research is the understanding of the pathophysiological profile of relapse risk and the development of treatments for relapse prevention. Exposure to drug-paired environmental stimuli elicits craving and increases the likelihood to relapse. Therefore, scholars in the addiction field have developed several preclinical models of cued relapse in order to study the biological and pharmacological background of this phenomenon. Here we provide an overview of the nowadays available models of cued relapse to psychostimulant seeking. We begin describing the models of relapse induced by drug-contingent and discriminative stimuli, and then we give an overview of the models of context-induced relapse. Finally, we illustrate the models of incubation of cue-induced psychostimulant craving. For each relapse model we provide technical details, a step by step protocol, and troubleshooting tips. The researcher interested in studying the contribution of environmental stimuli to relapse will find here the tools to choose the optimal method to answer their question, and technical details necessary to the methodological implementation of their research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35(1):217–238. https://doi.org/10.1038/npp.2009.110

    Article  PubMed  Google Scholar 

  2. Koob GF, Volkow ND (2016) Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry 3(8):760–773. https://doi.org/10.1016/S2215-0366(16)00104-8

    Article  PubMed  PubMed Central  Google Scholar 

  3. Everitt BJ, Robbins TW (2016) Drug addiction: updating actions to habits to compulsions ten years on. Annu Rev Psychol 67:23–50. https://doi.org/10.1146/annurev-psych-122414-033457

    Article  PubMed  Google Scholar 

  4. Pickens CL, Airavaara M, Theberge F et al (2011) Neurobiology of the incubation of drug craving. Trends Neurosci 34(8):411–420. https://doi.org/10.1016/j.tins.2011.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Courtney KE, Schacht JP, Hutchison K et al (2016) Neural substrates of cue reactivity: association with treatment outcomes and relapse. Addict Biol 21(1):3–22. https://doi.org/10.1111/adb.12314

    Article  PubMed  Google Scholar 

  6. Moeller SJ, Beebe-Wang N, Woicik PA et al (2013) Choice to view cocaine images predicts concurrent and prospective drug use in cocaine addiction. Drug Alcohol Depend 130(1–3):178–185. https://doi.org/10.1016/j.drugalcdep.2012.11.001

    Article  PubMed  Google Scholar 

  7. Prisciandaro JJ, Myrick H, Henderson S et al (2013) Prospective associations between brain activation to cocaine and no-go cues and cocaine relapse. Drug Alcohol Depend 131(1–2):44–49. https://doi.org/10.1016/j.drugalcdep.2013.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fuchs RA, Lasseter HC, Ramirez DR et al (2008) Relapse to drug seeking following prolonged abstinence: the role of environmental stimuli. Drug Discov Today Dis Models 5(4):251–258. https://doi.org/10.1016/j.ddmod.2009.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beardsley PM, Shelton KL (2012) Prime-, stress-, and cue-induced reinstatement of extinguished drug-reinforced responding in rats: cocaine as the prototypical drug of abuse. Curr Protoc Neurosci Chapter 9:Unit 9.39. https://doi.org/10.1002/0471142301.ns0939s61

    Article  PubMed  Google Scholar 

  10. Halbout B, Bernardi RE, Hansson AC et al (2014) Incubation of cocaine seeking following brief cocaine experience in mice is enhanced by mGluR1 blockade. J Neurosci 34(5):1781–1790. https://doi.org/10.1523/JNEUROSCI.1076-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mead AN, Zamanillo D, Becker N et al (2007) AMPA-receptor GluR1 subunits are involved in the control over behavior by cocaine-paired cues. Neuropsychopharmacology 32(2):343–353. https://doi.org/10.1038/sj.npp.1301045

    Article  CAS  PubMed  Google Scholar 

  12. Orejarena MJ, Lanfumey L, Maldonado R et al (2011) Involvement of 5-HT2A receptors in MDMA reinforcement and cue-induced reinstatement of MDMA-seeking behaviour. Int J Neuropsychopharmacol 14(7):927–940. https://doi.org/10.1017/S1461145710001215

    Article  CAS  PubMed  Google Scholar 

  13. Georgiou P, Zanos P, Ehteramyan M et al (2015) Differential regulation of mGlu5 R and MuOPr by priming- and cue-induced reinstatement of cocaine-seeking behaviour in mice. Addict Biol 20(5):902–912. https://doi.org/10.1111/adb.12208

    Article  CAS  PubMed  Google Scholar 

  14. Fowler CD, Kenny PJ (2012) Utility of genetically modified mice for understanding the neurobiology of substance use disorders. Hum Genet 131(6):941–957. https://doi.org/10.1007/s00439-011-1129-z

    Article  PubMed  Google Scholar 

  15. Yoshimi K, Mashimo T (2018) Application of genome editing technologies in rats for human disease models. J Hum Genet 63(2):115–123. https://doi.org/10.1038/s10038-017-0346-2

    Article  CAS  PubMed  Google Scholar 

  16. Yan Y, Nabeshima T (2009) Mouse model of relapse to the abuse of drugs: procedural considerations and characterizations. Behav Brain Res 196(1):1–10. https://doi.org/10.1016/j.bbr.2008.08.017

    Article  CAS  PubMed  Google Scholar 

  17. Caine SB, Negus SS, Mello NK (1999) Method for training operant responding and evaluating cocaine self-administration behavior in mutant mice. Psychopharmacology 147(1):22–24. https://doi.org/10.1007/s002130051134

    Article  CAS  PubMed  Google Scholar 

  18. Rocha BA (1999) Methodology for analyzing the parallel between cocaine psychomotor stimulant and reinforcing effects in mice. Psychopharmacology 147(1):27–29. https://doi.org/10.1007/s002130051136

    Article  CAS  PubMed  Google Scholar 

  19. Oberhofer J, Noori HR (2019) Quantitative evaluation of cue-induced reinstatement model for evidence-based experimental optimization. Addict Biol 24(2):218–227. https://doi.org/10.1111/adb.12588

    Article  PubMed  Google Scholar 

  20. Kuhn BN, Kalivas PW, Bobadilla AC (2019) Understanding addiction using animal models. Front Behav Neurosci 13:262. https://doi.org/10.3389/fnbeh.2019.00262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Deiana S, Fattore L, Spano MS et al (2007) Strain and schedule-dependent differences in the acquisition, maintenance and extinction of intravenous cannabinoid self-administration in rats. Neuropharmacology 52(2):646–654. https://doi.org/10.1016/j.neuropharm.2006.09.007

    Article  CAS  PubMed  Google Scholar 

  22. Clemens KJ, Caille S, Cador M (2010) The effects of response operand and prior food training on intravenous nicotine self-administration in rats. Psychopharmacology 211(1):43–54. https://doi.org/10.1007/s00213-010-1866-z

    Article  CAS  PubMed  Google Scholar 

  23. Lu L, Grimm JW, Hope BT et al (2004) Incubation of cocaine craving after withdrawal: a review of preclinical data. Neuropharmacology 47(Suppl 1):214–226. https://doi.org/10.1016/j.neuropharm.2004.06.027

    Article  CAS  PubMed  Google Scholar 

  24. Li C, Frantz KJ (2009) Attenuated incubation of cocaine seeking in male rats trained to self-administer cocaine during periadolescence. Psychopharmacology 204(4):725–733. https://doi.org/10.1007/s00213-009-1502-y

    Article  CAS  PubMed  Google Scholar 

  25. Thiel KJ, Painter MR, Pentkowski NS et al (2012) Environmental enrichment counters cocaine abstinence-induced stress and brain reactivity to cocaine cues but fails to prevent the incubation effect. Addict Biol 17(2):365–377. https://doi.org/10.1111/j.1369-1600.2011.00358.x

    Article  CAS  PubMed  Google Scholar 

  26. Chauvet C, Goldberg SR, Jaber M et al (2012) Effects of environmental enrichment on the incubation of cocaine craving. Neuropharmacology 63(4):635–641. https://doi.org/10.1016/j.neuropharm.2012.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Johnson AR, Thibeault KC, Lopez AJ et al (2019) Cues play a critical role in estrous cycle-dependent enhancement of cocaine reinforcement. Neuropsychopharmacology 44(7):1189–1197. https://doi.org/10.1038/s41386-019-0320-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nicolas C, Russell TI, Pierce AF et al (2019) Incubation of cocaine craving after intermittent-access self-administration: sex differences and estrous cycle. Biol Psychiatry 85(11):915–924. https://doi.org/10.1016/j.biopsych.2019.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cannella N, Cosa-Linan A, Roscher M et al (2017) [18F]-Fluorodeoxyglucose-positron emission tomography in rats with prolonged cocaine self-administration suggests potential brain biomarkers for addictive behavior. Front Psychiatry 8:218. https://doi.org/10.3389/fpsyt.2017.00218

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mahler SV, Smith RJ, Aston-Jones G (2013) Interactions between VTA orexin and glutamate in cue-induced reinstatement of cocaine seeking in rats. Psychopharmacology 226(4):687–698. https://doi.org/10.1007/s00213-012-2681-5

    Article  CAS  PubMed  Google Scholar 

  31. Bernardi RE, Olevska A, Morella I et al (2019) The inhibition of RasGRF2, but not RasGRF1, alters cocaine reward in mice. J Neurosci 39(32):6325–6338. https://doi.org/10.1523/JNEUROSCI.1120-18.2019

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bilbao A, Rieker C, Cannella N et al (2014) CREB activity in dopamine D1 receptor expressing neurons regulates cocaine-induced behavioral effects. Front Behav Neurosci 8:212. https://doi.org/10.3389/fnbeh.2014.00212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xie X, Ramirez DR, Lasseter HC et al (2010) Effects of mGluR1 antagonism in the dorsal hippocampus on drug context-induced reinstatement of cocaine-seeking behavior in rats. Psychopharmacology 208(1):1–11. https://doi.org/10.1007/s00213-009-1700-7

    Article  CAS  PubMed  Google Scholar 

  34. Fuchs RA, Evans KA, Ledford CC et al (2005) The role of the dorsomedial prefrontal cortex, basolateral amygdala, and dorsal hippocampus in contextual reinstatement of cocaine seeking in rats. Neuropsychopharmacology 30(2):296–309. https://doi.org/10.1038/sj.npp.1300579

    Article  CAS  PubMed  Google Scholar 

  35. McFarland K, Lapish CC, Kalivas PW (2003) Prefrontal glutamate release into the core of the nucleus accumbens mediates cocaine-induced reinstatement of drug-seeking behavior. J Neurosci 23(8):3531–3537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cervo L, Carnovali F, Stark JA et al (2003) Cocaine-seeking behavior in response to drug-associated stimuli in rats: involvement of D3 and D2 dopamine receptors. Neuropsychopharmacology 28(6):1150–1159. https://doi.org/10.1038/sj.npp.1300169

    Article  CAS  PubMed  Google Scholar 

  37. Ciccocioppo R, Martin-Fardon R, Weiss F (2004) Stimuli associated with a single cocaine experience elicit long-lasting cocaine-seeking. Nat Neurosci 7(5):495–496. https://doi.org/10.1038/nn1219

    Article  CAS  PubMed  Google Scholar 

  38. Weiss F, Martin-Fardon R, Ciccocioppo R et al (2001) Enduring resistance to extinction of cocaine-seeking behavior induced by drug-related cues. Neuropsychopharmacology 25(3):361–372. https://doi.org/10.1016/S0893-133X(01)00238-X

    Article  CAS  PubMed  Google Scholar 

  39. Backstrom P, Hyytia P (2006) Ionotropic and metabotropic glutamate receptor antagonism attenuates cue-induced cocaine seeking. Neuropsychopharmacology 31(4):778–786. https://doi.org/10.1038/sj.npp.1300845

    Article  CAS  PubMed  Google Scholar 

  40. Nugent AL, Anderson EM, Larson EB et al (2017) Incubation of cue-induced reinstatement of cocaine, but not sucrose, seeking in C57BL/6J mice. Pharmacol Biochem Behav 159:12–17. https://doi.org/10.1016/j.pbb.2017.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Koob GF (2019) Introduction to addiction : addiction, animal models, and theories. Elsevier, San Deigo

    Google Scholar 

  42. Cannella N, Cosa-Linan A, Buchler E et al (2018) In vivo structural imaging in rats reveals neuroanatomical correlates of behavioral sub-dimensions of cocaine addiction. Addict Biol 23(1):182–195. https://doi.org/10.1111/adb.12500

    Article  CAS  PubMed  Google Scholar 

  43. Cannella N, Halbout B, Uhrig S et al (2013) The mGluR2/3 agonist LY379268 induced anti-reinstatement effects in rats exhibiting addiction-like behavior. Neuropsychopharmacology 38(10):2048–2056. https://doi.org/10.1038/npp.2013.106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Garcia-Rivas V, Fiancette JF, Cannella N et al (2019) Varenicline targets the reinforcing-enhancing effect of nicotine on its associated salient cue during nicotine self-administration in the rat. Front Behav Neurosci 13:159. https://doi.org/10.3389/fnbeh.2019.00159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shen Q, Deng Y, Ciccocioppo R et al (2017) Cebranopadol, a mixed opioid agonist, reduces cocaine self-administration through nociceptin opioid and mu opioid receptors. Front Psych 8:234. https://doi.org/10.3389/fpsyt.2017.00234

    Article  Google Scholar 

  46. Cannella N, Oliveira AMM, Hemstedt T et al (2018) Dnmt3a2 in the nucleus accumbens shell is required for reinstatement of cocaine seeking. J Neurosci 38(34):7516–7528. https://doi.org/10.1523/JNEUROSCI.0600-18.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rubio FJ, Quintana-Feliciano R, Warren BL et al (2019) Prelimbic cortex is a common brain area activated during cue-induced reinstatement of cocaine and heroin seeking in a polydrug self-administration rat model. Eur J Neurosci 49(2):165–178. https://doi.org/10.1111/ejn.14203

    Article  PubMed  Google Scholar 

  48. Fattore L, Piras G, Corda MG et al (2009) The Roman high- and low-avoidance rat lines differ in the acquisition, maintenance, extinction, and reinstatement of intravenous cocaine self-administration. Neuropsychopharmacology 34(5):1091–1101. https://doi.org/10.1038/npp.2008.43

    Article  CAS  PubMed  Google Scholar 

  49. See RE, Grimm JW, Kruzich PJ et al (1999) The importance of a compound stimulus in conditioned drug-seeking behavior following one week of extinction from self-administered cocaine in rats. Drug Alcohol Depend 57(1):41–49. https://doi.org/10.1016/s0376-8716(99)00043-5

    Article  CAS  PubMed  Google Scholar 

  50. de Wit H, Stewart J (1981) Reinstatement of cocaine-reinforced responding in the rat. Psychopharmacology 75(2):134–143. https://doi.org/10.1007/bf00432175

    Article  PubMed  Google Scholar 

  51. Meil WM, See RE (1996) Conditioned cued recovery of responding following prolonged withdrawal from self-administered cocaine in rats: an animal model of relapse. Behav Pharmacol 7(8):754–763

    CAS  PubMed  Google Scholar 

  52. Grimm JW, Hope BT, Wise RA et al (2001) Neuroadaptation. Incubation of cocaine craving after withdrawal. Nature 412(6843):141–142. https://doi.org/10.1038/35084134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fuchs RA, Tran-Nguyen LT, Specio SE et al (1998) Predictive validity of the extinction/reinstatement model of drug craving. Psychopharmacology 135(2):151–160. https://doi.org/10.1007/s002130050496

    Article  CAS  PubMed  Google Scholar 

  54. Weiss F (2010) Advances in animal models of relapse for addiction research. In: Kuhn CM, Koob GF (eds) Advances in the neuroscience of addiction. Frontiers in neuroscience. CRC Press, Boca Raton (FL)

    Google Scholar 

  55. See RE (2005) Neural substrates of cocaine-cue associations that trigger relapse. Eur J Pharmacol 526(1–3):140–146. https://doi.org/10.1016/j.ejphar.2005.09.034

    Article  CAS  PubMed  Google Scholar 

  56. Shalev U, Grimm JW, Shaham Y (2002) Neurobiology of relapse to heroin and cocaine seeking: a review. Pharmacol Rev 54(1):1–42. https://doi.org/10.1124/pr.54.1.1

    Article  CAS  PubMed  Google Scholar 

  57. Le AD, Harding S, Juzytsch W et al (2005) Role of alpha-2 adrenoceptors in stress-induced reinstatement of alcohol seeking and alcohol self-administration in rats. Psychopharmacology 179(2):366–373. https://doi.org/10.1007/s00213-004-2036-y

    Article  CAS  PubMed  Google Scholar 

  58. Cippitelli A, Cannella N, Braconi S et al (2008) Increase of brain endocannabinoid anandamide levels by FAAH inhibition and alcohol abuse behaviours in the rat. Psychopharmacology 198(4):449–460. https://doi.org/10.1007/s00213-008-1104-0

    Article  CAS  PubMed  Google Scholar 

  59. Hollander JA, Carelli RM (2007) Cocaine-associated stimuli increase cocaine seeking and activate accumbens core neurons after abstinence. J Neurosci 27(13):3535–3539. https://doi.org/10.1523/JNEUROSCI.3667-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Manuszak M, Harding W, Gadhiya S et al (2018) (−)-Stepholidine reduces cue-induced reinstatement of cocaine seeking and cocaine self-administration in rats. Drug Alcohol Depend 189:49–54. https://doi.org/10.1016/j.drugalcdep.2018.04.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kruzich PJ (2007) Does response-contingent access to cocaine reinstate previously extinguished cocaine-seeking behavior in C57BL/6J mice? Brain Res 1149:165–171. https://doi.org/10.1016/j.brainres.2007.02.037

    Article  CAS  PubMed  Google Scholar 

  62. Saunders BT, Robinson TE (2010) A cocaine cue acts as an incentive stimulus in some but not others: implications for addiction. Biol Psychiatry 67(8):730–736. https://doi.org/10.1016/j.biopsych.2009.11.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kallupi M, de Guglielmo G, Cannella N et al (2013) Hypothalamic neuropeptide S receptor blockade decreases discriminative cue-induced reinstatement of cocaine seeking in the rat. Psychopharmacology 226(2):347–355. https://doi.org/10.1007/s00213-012-2910-y

    Article  CAS  PubMed  Google Scholar 

  64. Kallupi M, Cannella N, Economidou D et al (2010) Neuropeptide S facilitates cue-induced relapse to cocaine seeking through activation of the hypothalamic hypocretin system. Proc Natl Acad Sci U S A 107(45):19567–19572. https://doi.org/10.1073/pnas.1004100107

    Article  PubMed  PubMed Central  Google Scholar 

  65. Deroche-Gamonet V, Martinez A, Le Moal M et al (2003) Relationships between individual sensitivity to CS- and cocaine-induced reinstatement in the rat. Psychopharmacology 168(1–2):201–207. https://doi.org/10.1007/s00213-002-1306-9

    Article  CAS  PubMed  Google Scholar 

  66. Perry CJ, Reed F, Zbukvic IC et al (2016) The metabotropic glutamate 5 receptor is necessary for extinction of cocaine-associated cues. Br J Pharmacol 173(6):1085–1094. https://doi.org/10.1111/bph.13437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shaham Y, Shalev U, Lu L et al (2003) The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology 168(1–2):3–20. https://doi.org/10.1007/s00213-002-1224-x

    Article  CAS  PubMed  Google Scholar 

  68. Knackstedt LA, Moussawi K, Lalumiere R et al (2010) Extinction training after cocaine self-administration induces glutamatergic plasticity to inhibit cocaine seeking. J Neurosci 30(23):7984–7992. https://doi.org/10.1523/JNEUROSCI.1244-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bongiovanni M, See RE (2008) A comparison of the effects of different operant training experiences and dietary restriction on the reinstatement of cocaine-seeking in rats. Pharmacol Biochem Behav 89(2):227–233. https://doi.org/10.1016/j.pbb.2007.12.019

    Article  CAS  PubMed  Google Scholar 

  70. Chesworth R, Brown RM, Kim JH et al (2013) The metabotropic glutamate 5 receptor modulates extinction and reinstatement of methamphetamine-seeking in mice. PLoS One 8(7):e68371. https://doi.org/10.1371/journal.pone.0068371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yan Y, Nitta A, Mizoguchi H et al (2006) Relapse of methamphetamine-seeking behavior in C57BL/6J mice demonstrated by a reinstatement procedure involving intravenous self-administration. Behav Brain Res 168(1):137–143. https://doi.org/10.1016/j.bbr.2005.11.030

    Article  CAS  PubMed  Google Scholar 

  72. Arguello AA, Richardson BD, Hall JL et al (2017) Role of a lateral orbital frontal cortex-basolateral amygdala circuit in cue-induced cocaine-seeking behavior. Neuropsychopharmacology 42(3):727–735. https://doi.org/10.1038/npp.2016.157

    Article  CAS  PubMed  Google Scholar 

  73. Di Ciano P, Robbins TW, Everitt BJ (2008) Differential effects of nucleus accumbens core, shell, or dorsal striatal inactivations on the persistence, reacquisition, or reinstatement of responding for a drug-paired conditioned reinforcer. Neuropsychopharmacology 33(6):1413–1425. https://doi.org/10.1038/sj.npp.1301522

    Article  CAS  PubMed  Google Scholar 

  74. Rich MT, Huang YH, Torregrossa MM (2019) Plasticity at thalamo-amygdala synapses regulates cocaine-cue memory formation and extinction. Cell Rep 26(4):1010–1020.e1015. https://doi.org/10.1016/j.celrep.2018.12.105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen YY, Zhang LB, Li Y et al (2019) Post-retrieval extinction prevents reconsolidation of methamphetamine memory traces and subsequent reinstatement of methamphetamine seeking. Front Mol Neurosci 12:157. https://doi.org/10.3389/fnmol.2019.00157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ahmed SH, Koob GF (1999) Long-lasting increase in the set point for cocaine self-administration after escalation in rats. Psychopharmacology 146(3):303–312. https://doi.org/10.1007/s002130051121

    Article  CAS  PubMed  Google Scholar 

  77. Algallal H, Allain F, Ndiaye NA et al (2019) Sex differences in cocaine self-administration behaviour under long access versus intermittent access conditions. Addict Biol 25:e12809. https://doi.org/10.1111/adb.12809

    Article  CAS  PubMed  Google Scholar 

  78. Belin D, Balado E, Piazza PV et al (2009) Pattern of intake and drug craving predict the development of cocaine addiction-like behavior in rats. Biol Psychiatry 65(10):863–868. https://doi.org/10.1016/j.biopsych.2008.05.031

    Article  CAS  PubMed  Google Scholar 

  79. Allain F, Samaha AN (2019) Revisiting long-access versus short-access cocaine self-administration in rats: intermittent intake promotes addiction symptoms independent of session length. Addict Biol 24(4):641–651. https://doi.org/10.1111/adb.12629

    Article  CAS  PubMed  Google Scholar 

  80. Ciccocioppo R, Martin-Fardon R, Weiss F (2002) Effect of selective blockade of mu(1) or delta opioid receptors on reinstatement of alcohol-seeking behavior by drug-associated stimuli in rats. Neuropsychopharmacology 27(3):391–399. https://doi.org/10.1016/S0893-133X(02)00302-0

    Article  CAS  PubMed  Google Scholar 

  81. Weiss F, Maldonado-Vlaar CS, Parsons LH et al (2000) Control of cocaine-seeking behavior by drug-associated stimuli in rats: effects on recovery of extinguished operant-responding and extracellular dopamine levels in amygdala and nucleus accumbens. Proc Natl Acad Sci U S A 97(8):4321–4326. https://doi.org/10.1073/pnas.97.8.4321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cannella N, Economidou D, Kallupi M et al (2009) Persistent increase of alcohol-seeking evoked by neuropeptide S: an effect mediated by the hypothalamic hypocretin system. Neuropsychopharmacology 34(9):2125–2134. https://doi.org/10.1038/npp.2009.37

    Article  CAS  PubMed  Google Scholar 

  83. Crombag HS, Bossert JM, Koya E et al (2008) Review. Context-induced relapse to drug seeking: a review. Philos Trans R Soc Lond Ser B Biol Sci 363(1507):3233–3243. https://doi.org/10.1098/rstb.2008.0090

    Article  Google Scholar 

  84. Crombag HS, Grimm JW, Shaham Y (2002) Effect of dopamine receptor antagonists on renewal of cocaine seeking by reexposure to drug-associated contextual cues. Neuropsychopharmacology 27(6):1006–1015. https://doi.org/10.1016/S0893-133X(02)00356-1

    Article  CAS  PubMed  Google Scholar 

  85. Saunders BT, O’Donnell EG, Aurbach EL et al (2014) A cocaine context renews drug seeking preferentially in a subset of individuals. Neuropsychopharmacology 39(12):2816–2823. https://doi.org/10.1038/npp.2014.131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bossert JM, Liu SY, Lu L et al (2004) A role of ventral tegmental area glutamate in contextual cue-induced relapse to heroin seeking. J Neurosci 24(47):10726–10730. https://doi.org/10.1523/JNEUROSCI.3207-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Adhikary S, Caprioli D, Venniro M et al (2017) Incubation of extinction responding and cue-induced reinstatement, but not context- or drug priming-induced reinstatement, after withdrawal from methamphetamine. Addict Biol 22(4):977–990. https://doi.org/10.1111/adb.12386

    Article  CAS  PubMed  Google Scholar 

  88. Pelloux Y, Hoots JK, Cifani C et al (2018) Context-induced relapse to cocaine seeking after punishment-imposed abstinence is associated with activation of cortical and subcortical brain regions. Addict Biol 23(2):699–712. https://doi.org/10.1111/adb.12527

    Article  CAS  PubMed  Google Scholar 

  89. Fuchs RA, Branham RK, See RE (2006) Different neural substrates mediate cocaine seeking after abstinence versus extinction training: a critical role for the dorsolateral caudate-putamen. J Neurosci 26(13):3584–3588. https://doi.org/10.1523/JNEUROSCI.5146-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bouton ME, Westbrook RF, Corcoran KA et al (2006) Contextual and temporal modulation of extinction: behavioral and biological mechanisms. Biol Psychiatry 60(4):352–360. https://doi.org/10.1016/j.biopsych.2005.12.015

    Article  PubMed  Google Scholar 

  91. Rosas JM, Bouton ME (1997) Additivity of the effects of retention interval and context change on latent inhibition: toward resolution of the context forgetting paradox. J Exp Psychol Anim Behav Process 23(3):283–294. https://doi.org/10.1037//0097-7403.23.3.283

    Article  CAS  PubMed  Google Scholar 

  92. Bouton ME, King DA (1983) Contextual control of the extinction of conditioned fear: tests for the associative value of the context. J Exp Psychol Anim Behav Process 9(3):248–265

    Article  CAS  PubMed  Google Scholar 

  93. Todd TP, Vurbic D, Bouton ME (2014) Mechanisms of renewal after the extinction of discriminated operant behavior. J Exp Psychol Anim Learn Cogn 40(3):355–368. https://doi.org/10.1037/xan0000021

    Article  PubMed  PubMed Central  Google Scholar 

  94. Rescorla RA (2008) Within-subject renewal in sign tracking. Q J Exp Psychol (Hove) 61(12):1793–1802. https://doi.org/10.1080/17470210701790099

    Article  Google Scholar 

  95. Cuevas K, Learmonth AE, Rovee-Collier C (2016) A dissociation between recognition and reactivation: the renewal effect at 3 months of age. Dev Psychobiol 58(2):159–175. https://doi.org/10.1002/dev.21357

    Article  PubMed  Google Scholar 

  96. Yap CS, Richardson R (2007) Extinction in the developing rat: an examination of renewal effects. Dev Psychobiol 49(6):565–575. https://doi.org/10.1002/dev.20244

    Article  PubMed  Google Scholar 

  97. Laborda MA, Witnauer JE, Miller RR (2011) Contrasting AAC and ABC renewal: the role of context associations. Learn Behav 39(1):46–56. https://doi.org/10.3758/s13420-010-0007-1

    Article  PubMed  Google Scholar 

  98. Schmajuk NA, Larrauri JA, Labar KS (2007) Reinstatement of conditioned fear and the hippocampus: an attentional-associative model. Behav Brain Res 177(2):242–253. https://doi.org/10.1016/j.bbr.2006.11.026

    Article  PubMed  Google Scholar 

  99. Crombag HS, Shaham Y (2002) Renewal of drug seeking by contextual cues after prolonged extinction in rats. Behav Neurosci 116(1):169–173. https://doi.org/10.1037//0735-7044.116.1.169

    Article  CAS  PubMed  Google Scholar 

  100. Bouton ME (2002) Context, ambiguity, and unlearning: sources of relapse after behavioral extinction. Biol Psychiatry 52(10):976–986. https://doi.org/10.1016/s0006-3223(02)01546-9

    Article  PubMed  Google Scholar 

  101. Trask S, Thrailkill EA, Bouton ME (2017) Occasion setting, inhibition, and the contextual control of extinction in Pavlovian and instrumental (operant) learning. Behav Process 137:64–72. https://doi.org/10.1016/j.beproc.2016.10.003

    Article  Google Scholar 

  102. Bossert JM, Marchant NJ, Calu DJ et al (2013) The reinstatement model of drug relapse: recent neurobiological findings, emerging research topics, and translational research. Psychopharmacology 229(3):453–476. https://doi.org/10.1007/s00213-013-3120-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bouton ME, Winterbauer NE, Todd TP (2012) Relapse processes after the extinction of instrumental learning: renewal, resurgence, and reacquisition. Behav Process 90(1):130–141. https://doi.org/10.1016/j.beproc.2012.03.004

    Article  Google Scholar 

  104. Khoo SY, Gibson GD, Prasad AA et al (2017) How contexts promote and prevent relapse to drug seeking. Genes Brain Behav 16(1):185–204. https://doi.org/10.1111/gbb.12328

    Article  PubMed  Google Scholar 

  105. Perry CJ, Zbukvic I, Kim JH et al (2014) Role of cues and contexts on drug-seeking behaviour. Br J Pharmacol 171(20):4636–4672. https://doi.org/10.1111/bph.12735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sinha R, Fuse T, Aubin LR et al (2000) Psychological stress, drug-related cues and cocaine craving. Psychopharmacology 152(2):140–148. https://doi.org/10.1007/s002130000499

    Article  CAS  PubMed  Google Scholar 

  107. Childress AR, Mozley PD, McElgin W et al (1999) Limbic activation during cue-induced cocaine craving. Am J Psychiatry 156(1):11–18. https://doi.org/10.1176/ajp.156.1.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gawin FH, Kleber HD (1986) Abstinence symptomatology and psychiatric diagnosis in cocaine abusers. Clinical observations. Arch Gen Psychiatry 43(2):107–113. https://doi.org/10.1001/archpsyc.1986.01800020013003

    Article  CAS  PubMed  Google Scholar 

  109. Reichel CM, Bevins RA (2009) Forced abstinence model of relapse to study pharmacological treatments of substance use disorder. Curr Drug Abuse Rev 2(2):184–194. https://doi.org/10.2174/1874473710902020184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Venniro M, Caprioli D, Shaham Y (2016) Animal models of drug relapse and craving: from drug priming-induced reinstatement to incubation of craving after voluntary abstinence. Prog Brain Res 224:25–52. https://doi.org/10.1016/bs.pbr.2015.08.004

    Article  PubMed  Google Scholar 

  111. Luis C, Cannella N, Spanagel R et al (2017) Persistent strengthening of the prefrontal cortex - nucleus accumbens pathway during incubation of cocaine-seeking behavior. Neurobiol Learn Mem 138:281–290. https://doi.org/10.1016/j.nlm.2016.10.003

    Article  CAS  PubMed  Google Scholar 

  112. Ben-Shahar O, Sacramento AD, Miller BW et al (2013) Deficits in ventromedial prefrontal cortex group 1 metabotropic glutamate receptor function mediate resistance to extinction during protracted withdrawal from an extensive history of cocaine self-administration. J Neurosci 33(2):495–506a. https://doi.org/10.1523/JNEUROSCI.3710-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lee BR, Ma YY, Huang YH et al (2013) Maturation of silent synapses in amygdala-accumbens projection contributes to incubation of cocaine craving. Nat Neurosci 16(11):1644–1651. https://doi.org/10.1038/nn.3533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lu L, Wang X, Wu P et al (2009) Role of ventral tegmental area glial cell line-derived neurotrophic factor in incubation of cocaine craving. Biol Psychiatry 66(2):137–145. https://doi.org/10.1016/j.biopsych.2009.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ma YY, Lee BR, Wang X et al (2014) Bidirectional modulation of incubation of cocaine craving by silent synapse-based remodeling of prefrontal cortex to accumbens projections. Neuron 83(6):1453–1467. https://doi.org/10.1016/j.neuron.2014.08.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Suska A, Lee BR, Huang YH et al (2013) Selective presynaptic enhancement of the prefrontal cortex to nucleus accumbens pathway by cocaine. Proc Natl Acad Sci U S A 110(2):713–718. https://doi.org/10.1073/pnas.1206287110

    Article  PubMed  Google Scholar 

  117. Zlebnik NE, Carroll ME (2015) Prevention of the incubation of cocaine seeking by aerobic exercise in female rats. Psychopharmacology 232(19):3507–3513. https://doi.org/10.1007/s00213-015-3999-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Shin CB, Serchia MM, Shahin JR et al (2016) Incubation of cocaine-craving relates to glutamate over-flow within ventromedial prefrontal cortex. Neuropharmacology 102:103–110. https://doi.org/10.1016/j.neuropharm.2015.10.038

    Article  CAS  PubMed  Google Scholar 

  119. Li X, Caprioli D, Marchant NJ (2015) Recent updates on incubation of drug craving: a mini-review. Addict Biol 20(5):872–876. https://doi.org/10.1111/adb.12205

    Article  PubMed  Google Scholar 

  120. Zlebnik NE, Anker JJ, Gliddon LA et al (2010) Reduction of extinction and reinstatement of cocaine seeking by wheel running in female rats. Psychopharmacology 209(1):113–125. https://doi.org/10.1007/s00213-010-1776-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Smith MA, Pennock MM, Walker KL et al (2012) Access to a running wheel decreases cocaine-primed and cue-induced reinstatement in male and female rats. Drug Alcohol Depend 121(1–2):54–61. https://doi.org/10.1016/j.drugalcdep.2011.08.006

    Article  CAS  PubMed  Google Scholar 

  122. Peterson AB, Abel JM, Lynch WJ (2014) Dose-dependent effects of wheel running on cocaine-seeking and prefrontal cortex Bdnf exon IV expression in rats. Psychopharmacology 231(7):1305–1314. https://doi.org/10.1007/s00213-013-3321-4

    Article  CAS  PubMed  Google Scholar 

  123. Lynch WJ, Piehl KB, Acosta G et al (2010) Aerobic exercise attenuates reinstatement of cocaine-seeking behavior and associated neuroadaptations in the prefrontal cortex. Biol Psychiatry 68(8):774–777. https://doi.org/10.1016/j.biopsych.2010.06.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Grimm JW, Lu L, Hayashi T et al (2003) Time-dependent increases in brain-derived neurotrophic factor protein levels within the mesolimbic dopamine system after withdrawal from cocaine: implications for incubation of cocaine craving. J Neurosci 23(3):742–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by ERAB EA1840 to N.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazzareno Cannella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Borruto, A.M., Domi, A., Soverchia, L., Domi, E., Li, H., Cannella, N. (2022). Preclinical Models of Relapse to Psychostimulants Induced by Environmental Stimuli. In: Aguilar, M.A. (eds) Methods for Preclinical Research in Addiction. Neuromethods, vol 174. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1748-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1748-9_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1747-2

  • Online ISBN: 978-1-0716-1748-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics