Skip to main content

Puromycin Labeling Coupled with Proximity Ligation Assays to Define Sites of mRNA Translation in Drosophila Embryos and Human Cells

  • Protocol
  • First Online:
Mapping Genetic Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2381))

Abstract

Genetic mutations, whether they occur within protein-coding or noncoding regions of the genome, can affect various aspects of gene expression by influencing the complex network of intra- and intermolecular interactions that occur between cellular nucleic acids and proteins. One aspect of gene expression control that can be impacted is the intracellular trafficking and translation of mRNA molecules. To study the occurrence and dynamics of translational regulation, researchers have developed approaches such as genome-wide ribosome profiling and artificial reporters that enable single molecule imaging. In this paper, we describe a complementary and optimized approach that combines puromycin labeling with a proximity ligation assay (Puro-PLA) to define sites of translation of specific mRNAs in tissues or cells. This method can be used to study the mechanisms driving the translation of select mRNAs and to access the impact of genetic mutations on local protein synthesis. This approach involves the treatment of cell or tissue specimens with puromycin to label nascently translated peptides, rapid fixation, followed by immunolabeling with appropriate primary and secondary antibodies coupled to PLA oligonucleotide probes, ligation, amplification, and signal detection via fluorescence microscopy. Puro-PLA can be performed at small scale in individual tubes or in chambered slides, or in a high-throughput setup with 96-well plate, for both in situ and in vitro experimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356

    Article  CAS  Google Scholar 

  2. Lehner B (2011) Molecular mechanisms of epistasis within and between genes. Trends Genet 27(8):323–331

    Article  CAS  Google Scholar 

  3. Chin A, Lécuyer E (2017) RNA localization: making its way to the center stage, Biochimica et biophysica acta. General Subjects 1861(11 Pt B):2956–2970

    Article  CAS  Google Scholar 

  4. Lécuyer E, Yoshida H, Parthasarathy N et al (2007) Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell 131(1):174–187

    Article  Google Scholar 

  5. Iampietro C, Bergalet J, Wang X et al (2014) Developmentally regulated elimination of damaged nuclei involves a Chk2-dependent mechanism of mRNA nuclear retention. Dev Cell 29(4):468–481

    Article  CAS  Google Scholar 

  6. Kugler JM, Lasko P (2009) Localization, anchoring and translational control of oskar, gurken, bicoid and nanos mRNA during drosophila oogenesis. Fly 3(1):15–28

    Article  CAS  Google Scholar 

  7. Diot C, Chin A, Lécuyer E (2017) Optimized FISH methods for visualizing RNA localization properties in drosophila and human tissues and cultured cells. Methods (San Diego, Calif.) 126:156–165

    Article  CAS  Google Scholar 

  8. Paquin N, Chartrand P (2008) Local regulation of mRNA translation: new insights from the bud. Trends Cell Biol 18(3):105–111

    Article  CAS  Google Scholar 

  9. Medioni C, Mowry K, Besse F (2012) Principles and roles of mRNA localization in animal development. Development 139(18):3263–3276

    Article  CAS  Google Scholar 

  10. Ham BK, Brandom JL, Xoconostle-Cázares B et al (2009) A polypyrimidine tract binding protein, pumpkin RBP50, forms the basis of a phloem-mobile ribonucleoprotein complex. Plant Cell 21(1):197–215

    Article  CAS  Google Scholar 

  11. Kislauskis EH, Zhu X, Singer RH (1997) Beta-actin messenger RNA localization and protein synthesis augment cell motility. J Cell Biol 136(6):1263–1270

    Article  CAS  Google Scholar 

  12. Leung KM, van Horck FP, Lin AC et al (2006) Asymmetrical beta-actin mRNA translation in growth cones mediates attractive turning to netrin-1. Nat Neurosci 9(10):1247–1256

    Article  CAS  Google Scholar 

  13. Liu-Yesucevitz L, Bassell GJ, Gitler AD (2011) Local RNA translation at the synapse and in disease. J Neurosci 31(45):16086–16093

    Article  CAS  Google Scholar 

  14. Chouaib R, Safieddine A, Pichon X et al (2020) A dual protein-mRNA localization screen reveals compartmentalized translation and widespread co-translational RNA targeting. Develop Cell 54(6):773–791.e5

    Article  CAS  Google Scholar 

  15. Xia C, Fan J, Emanuel G et al (2019) Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression. Proc Natl Acad Sci U S A 116(39):19490–19499

    Article  CAS  Google Scholar 

  16. Wilk R, Hu J, Blotsky D et al (2016) Diverse and pervasive subcellular distributions for both coding and long noncoding RNAs. Genes Dev 30(5):594–609

    Article  CAS  Google Scholar 

  17. Fazal FM, Han S, Parker KR et al (2019) Atlas of subcellular RNA localization revealed by APEX-Seq. Cell 178(2):473–490.e26

    Article  CAS  Google Scholar 

  18. Benoit Bouvrette LP, Cody NAL, Bergalet J et al (2018) CeFra-seq reveals broad asymmetric mRNA and noncoding RNA distribution profiles in drosophila and human cells. RNA (New York, N.Y.) 24(1):98–113

    Article  Google Scholar 

  19. Rodriguez AJ, Shenoy SM, Singer RH et al (2006) Visualization of mRNA translation in living cells. J Cell Biol 175(1):67–76

    Article  CAS  Google Scholar 

  20. Xiao Z, Zou Q, Liu Y et al (2016) Genome-wide assessment of differential translations with ribosome profiling data. Nat Commun 7:11194

    Article  CAS  Google Scholar 

  21. Weinberg DE, Shah P, Eichhorn SW et al (2016) Improved ribosome-footprint and mRNA measurements provide insights into dynamics and regulation of yeast translation. Cell Rep 14(7):1787–1799

    Article  CAS  Google Scholar 

  22. Ingolia NT, Ghaemmaghami S, Newman JR et al (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science (New York, N.Y.) 324(5924):218–223

    Article  CAS  Google Scholar 

  23. Ingolia NT, Brar GA, Rouskin S et al (2012) The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protoc 7(8):1534–1550

    Article  CAS  Google Scholar 

  24. Yan X, Hoek TA, Vale RD et al (2016) Dynamics of translation of single mRNA molecules in vivo. Cell 165(4):976–989

    Article  CAS  Google Scholar 

  25. Halstead JM, Wilbertz JH, Wippich F et al (2016) TRICK: a single-molecule method for imaging the first round of translation in living cells and animals. Methods Enzymol 572:123–157

    Article  CAS  Google Scholar 

  26. Halstead JM, Lionnet T, Wilbertz JH et al (2015) Translation. An RNA biosensor for imaging the first round of translation from single cells to living animals. Science (New York, N.Y.) 347(6228):1367–1671

    Article  CAS  Google Scholar 

  27. Tanenbaum ME, Gilbert LA, Qi LS et al (2014) A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159(3):635–646

    Article  CAS  Google Scholar 

  28. Boersma S, Rabouw HH, Bruurs LJM et al (2020) Translation and replication dynamics of single RNA viruses. Cell 183(7):1930–1945.e23

    Article  CAS  Google Scholar 

  29. Zappulo A, van den Bruck D, Ciolli Mattioli C et al (2017) RNA localization is a key determinant of neurite-enriched proteome. Nat Commun 8(1):583

    Article  Google Scholar 

  30. tom Dieck S, Kochen L, Hanus C et al (2015) Direct visualization of newly synthesized target proteins in situ. Nat Methods 12(5):411–414

    Article  CAS  Google Scholar 

  31. Bergalet J, Patel D, Legendre F et al (2020) Inter-dependent Centrosomal co-localization of the cen and ik2 cis-natural antisense mRNAs in drosophila. Cell Rep 30(10):3339–3352.e6

    Article  CAS  Google Scholar 

  32. Pestka S (1971) Inhibitors of ribosome functions. Annu Rev Microbiol 25:487–562

    Article  CAS  Google Scholar 

  33. Grollman AP (1967) Inhibitors of protein biosynthesis. II. Mode of action of anisomycin. J Biol Chem 242(13):3226–3233

    Article  CAS  Google Scholar 

  34. Robb JA (1969) Maintenance of imaginal discs of Drosophila melanogaster in chemically defined media. J Cell Biol 41(3):876–885

    Article  CAS  Google Scholar 

  35. Jiang Z, Belforte JE, Lu Y et al (2010) eIF2alpha phosphorylation-dependent translation in CA1 pyramidal cells impairs hippocampal memory consolidation without affecting general translation. J Neurosci 30(7):2582–2594

    Article  CAS  Google Scholar 

  36. Wei CM, Hansen BS, Vaughan MH et al (1974) Mechanism of action of the mycotoxin trichodermin, a 12,13-epoxytrichothecene. Proc Natl Acad Sci U S A 71(3):713–717

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants to EL from the Canadian Cancer Society Research Institute and from the Canadian Institutes of Health Research (CIHR). AC was supported by the Vanier Canada Graduate Scholarship program from CIHR and EL is a Senior Scholar of the Fonds de Recherche du Québec Santé.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Lécuyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chin, A., Lécuyer, E. (2021). Puromycin Labeling Coupled with Proximity Ligation Assays to Define Sites of mRNA Translation in Drosophila Embryos and Human Cells. In: Vizeacoumar, F.J., Freywald, A. (eds) Mapping Genetic Interactions. Methods in Molecular Biology, vol 2381. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1740-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1740-3_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1739-7

  • Online ISBN: 978-1-0716-1740-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics