Skip to main content

In Vivo Genome-Wide Pooled RNAi Screens in Cancer Cells to Identify Determinants of Chemotherapy/Drug Response

  • Protocol
  • First Online:
Mapping Genetic Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2381))

Abstract

Large-scale RNAi screens (i.e., genome-wide arrays and pools) can reveal the essential biological functions of previously uncharacterized genes. Due to the nature of the selection process involved in screens, RNAi screens are also very useful for identifying genes involved in drug responses. The information gained from these screens could be used to predict a cancer patient’s response to a specific drug (i.e., precision medicine) or identify anti-cancer drug resistance genes, which could be targeted to improve treatment outcomes. In this capacity, screens have been most often performed in vitro. However, there is limitation to performing these screens in vitro: genes which are required in only an in vivo setting (e.g., rely on the tumor microenvironment for function) will not be identified. As such, it can be desirable to perform RNAi screens in vivo. Here we outline the additional technical details that should be considered for performing genome-wide RNAi drug screens of cancer cells under in vivo conditions (i.e., tumor xenografts).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jameson JL, Longo DL (2015) Precision medicine – personalized, problematic, and promising. N Engl J Med 372(23):2229–2234. https://doi.org/10.1056/NEJMsb1503104

    Article  CAS  PubMed  Google Scholar 

  2. Hu G, Luo J (2012) A primer on using pooled shRNA libraries for functional genomic screens. Acta Biochim Biophys Sin Shanghai 44(2):103–112. https://doi.org/10.1093/abbs/gmr116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lenoir WF, Lim TL, Hart T (2018) PICKLES: the database of pooled in-vitro CRISPR knockout library essentiality screens. Nucleic Acids Res 46(D1):D776–D780. https://doi.org/10.1093/nar/gkx993

    Article  CAS  PubMed  Google Scholar 

  4. Tu MM, Lee FYF, Jones RT et al (2019) Targeting DDR2 enhances tumor response to anti–PD-1 immunotherapy. Sci Adv 5(2). https://doi.org/10.1126/sciadv.aav2437

  5. Wolf J, MĂ¼ller-Decker K, Flechtenmacher C et al (2014) An in vivo RNAi screen identifies SALL1 as a tumor suppressor in human breast cancer with a role in CDH1 regulation. Oncogene 33(33):4273–4278. https://doi.org/10.1038/onc.2013.515

    Article  CAS  PubMed  Google Scholar 

  6. Workenhe ST, Ketela T, Moffat J et al (2016) Genome-wide lentiviral shRNA screen identifies serine/arginine-rich splicing factor 2 as a determinant of oncolytic virus activity in breast cancer cells. Oncogene 35(19):2465–2474. https://doi.org/10.1038/onc.2015.303

    Article  CAS  PubMed  Google Scholar 

  7. Sasaki K, Kurahara H, Young ED et al (2017) Genome-wide in vivo RNAi screen identifies ITIH5 as a metastasis suppressor in pancreatic cancer. Clin Exp Metastasis 34(3–4):229–239. https://doi.org/10.1007/s10585-017-9840-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Iskit S, Lieftink C, Halonen P et al (2016) Integrated in vivo genetic and pharmacologic screening identifies co-inhibition of EGRF and ROCK as a potential treatment regimen for triple-negative breast cancer. Oncotarget 7(28):42859–42872. https://doi.org/10.18632/oncotarget.10230

    Article  PubMed  PubMed Central  Google Scholar 

  9. Geng R, Tan X, Zuo Z et al (2017) Synthetic lethal short hairpin RNA screening reveals that ring finger protein 183 confers resistance to trametinib in colorectal cancer cells. Chin J Cancer 36(1):63. https://doi.org/10.1186/s40880-017-0228-1

    Article  PubMed  PubMed Central  Google Scholar 

  10. Schaefer C, Mallela N, SeggewiĂŸ J et al (2018) Target discovery screens using pooled shRNA libraries and next-generation sequencing: a model workflow and analytical algorithm. PLoS One 13(1). https://doi.org/10.1371/journal.pone.0191570

  11. Gargiulo G, Serresi M, Cesaroni M et al (2014) In vivo shRNA screens in solid tumors. Nat Protoc 9(12):2880–2902. https://doi.org/10.1038/nprot.2014.185

    Article  CAS  PubMed  Google Scholar 

  12. Marcato P, Dean CA, Liu RZ et al (2015) Aldehyde dehydrogenase 1A3 influences breast cancer progression via differential retinoic acid signaling. Mol Oncol 9(1):17–31. https://doi.org/10.1016/j.molonc.2014.07.010

    Article  CAS  PubMed  Google Scholar 

  13. Strezoska Ž, Licon A, Haimes J et al (2012) Optimized PCR conditions and increased shRNA fold representation improve reproducibility of pooled shRNA screens. PLoS One 7(8). https://doi.org/10.1371/journal.pone.0042341

  14. Islam MF, Watanabe A, Wong L et al (2017) Enhancing the throughput and multiplexing capabilities of next generation sequencing for efficient implementation of pooled shRNA and CRISPR screens. Sci Rep 7(1):1–12. https://doi.org/10.1038/s41598-017-01170-z

    Article  CAS  Google Scholar 

  15. Amer MH, White LJ, Shakesheff KM (2015) The effect of injection using narrow-bore needles on mammalian cells: administration and formulation considerations for cell therapies. J Pharm Pharmacol 67(5):640–650. https://doi.org/10.1111/jphp.12362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kampmann M, Horlbeck MA, Chen Y et al (2015) Next-generation libraries for robust RNA interference-based genome-wide screens. Proc Natl Acad Sci U S A 112(26):E3384–E3391. https://doi.org/10.1073/pnas.1508821112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

P.M. is funded by a grant support from the Canadian Institutes of Health Research (CIHR, PJT 162313). M.L.D. was supported by Nova Scotia Research and Innovation Graduate and Killam Laureate scholarships. M.L.D. was also supported by CGS-D award from the CIHR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Marcato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dahn, M.L., Marcato, P. (2021). In Vivo Genome-Wide Pooled RNAi Screens in Cancer Cells to Identify Determinants of Chemotherapy/Drug Response. In: Vizeacoumar, F.J., Freywald, A. (eds) Mapping Genetic Interactions. Methods in Molecular Biology, vol 2381. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1740-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1740-3_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1739-7

  • Online ISBN: 978-1-0716-1740-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics