Skip to main content

A Simple Method that Combines CRISPR and AID to Quickly Generate Conditional Knockouts for Essential Genes in Various Vertebrate Cell Lines

  • Protocol
  • First Online:
Essential Genes and Genomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2377))

  • 2013 Accesses

Abstract

Cells with a loss-of-function mutation in a gene (knockout cells) are powerful tools for characterizing the function of such gene product. However, for essential genes, conditional knockout cell lines must be generated. The auxin-inducible degron (AID) technique enables us to conditionally and rapidly deplete a target protein from various eukaryotic cell lines. A combination of CRISPR-/Cas9-based gene editing and AID technique allows us to generate AID-based conditional knockout cell lines. Using these two techniques, we recently proposed a simple and quick way to generate conditional knockout cells for essential genes. In this chapter, we introduce the reader to the experimental procedures to generate these AID-based conditional knockout cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. https://doi.org/10.1126/science.1231143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826. https://doi.org/10.1126/science.1232033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, Heckl D, Ebert BL, Root DE, Doench JG, Zhang F (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343(6166):84–87. https://doi.org/10.1126/science.1247005

    Article  PubMed  CAS  Google Scholar 

  4. Wang T, Wei JJ, Sabatini DM, Lander ES (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343(6166):80–84. https://doi.org/10.1126/science.1246981

    Article  PubMed  CAS  Google Scholar 

  5. Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K (1994) Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265(5168):103–106. https://doi.org/10.1126/science.8016642

    Article  PubMed  CAS  Google Scholar 

  6. Lakso M, Pichel JG, Gorman JR, Sauer B, Okamoto Y, Lee E, Alt FW, Westphal H (1996) Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc Natl Acad Sci U S A 93(12):5860–5865. https://doi.org/10.1073/pnas.93.12.5860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Gossen M, Bonin AL, Freundlieb S, Bujard H (1994) Inducible gene expression systems for higher eukaryotic cells. Curr Opin Biotechnol 5(5):516–520. https://doi.org/10.1016/0958-1669(94)90067-1

    Article  PubMed  CAS  Google Scholar 

  8. Sonoda E, Sasaki MS, Buerstedde JM, Bezzubova O, Shinohara A, Ogawa H, Takata M, Yamaguchi-Iwai Y, Takeda S (1998) Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. EMBO J 17(2):598–608. https://doi.org/10.1093/emboj/17.2.598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Fukagawa T, Mikami Y, Nishihashi A, Regnier V, Haraguchi T, Hiraoka Y, Sugata N, Todokoro K, Brown W, Ikemura T (2001) CENP-H, a constitutive centromere component, is required for centromere targeting of CENP-C in vertebrate cells. EMBO J 20(16):4603–4617. https://doi.org/10.1093/emboj/20.16.4603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Nishimura K, Fukagawa T, Takisawa H, Kakimoto T, Kanemaki M (2009) An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat Methods 6(12):917–922. https://doi.org/10.1038/nmeth.1401

    Article  PubMed  CAS  Google Scholar 

  11. Natsume T, Kiyomitsu T, Saga Y, Kanemaki MT (2016) Rapid protein depletion in human cells by auxin-inducible Degron tagging with short homology donors. Cell Rep 15(1):210–218. https://doi.org/10.1016/j.celrep.2016.03.001

    Article  PubMed  CAS  Google Scholar 

  12. Nishimura K, Fukagawa T (2017) An efficient method to generate conditional knockout cell lines for essential genes by combination of auxin-inducible degron tag and CRISPR/Cas9. Chromosome Res 25(3-4):253–260. https://doi.org/10.1007/s10577-017-9559-7

    Article  PubMed  CAS  Google Scholar 

  13. Pyzocha NK, Ran FA, Hsu PD, Zhang F (2014) RNA-guided genome editing of mammalian cells. Methods Mol Biol 1114:269–277. https://doi.org/10.1007/978-1-62703-761-7_17

    Article  PubMed  CAS  Google Scholar 

  14. Fukagawa T, Earnshaw WC (2014) The centromere: chromatin foundation for the kinetochore machinery. Dev Cell 30(5):496–508. https://doi.org/10.1016/j.devcel.2014.08.016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to R. Fukuoka and Y. Fukagawa for technical assistance. OsTIR1 cDNA was given from Prof. Masato Kanemaki (National Institute of Genetics). This work was supported by JSPS KAKENHI Grant Numbers 25221106, 15H05972, and 17H06167 to TF and JSPS KAKENHI Grant Number 17K15041 and 19K06611 to KN.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kohei Nishimura or Tatsuo Fukagawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nishimura, K., Fukagawa, T. (2022). A Simple Method that Combines CRISPR and AID to Quickly Generate Conditional Knockouts for Essential Genes in Various Vertebrate Cell Lines. In: Zhang, R. (eds) Essential Genes and Genomes. Methods in Molecular Biology, vol 2377. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1720-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1720-5_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1719-9

  • Online ISBN: 978-1-0716-1720-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics