Skip to main content

A Proposed Framework to Identify Dispensable and Essential Functions in Bifidobacteria: Case Study of Bifidobacterium breve UCC2003 as a Prototype of Its Genus

  • Protocol
  • First Online:
Essential Genes and Genomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2377))

  • 1850 Accesses

Abstract

Functional genomics of bacteria commonly aims at establishing genotype-phenotype links in microorganisms of industrial, technological and biomedical relevance. In this regard, random transposon mutagenesis coupled to high-throughput next-generation sequencing approaches, termed transposon-insertion sequencing (TIS), has emerged as a robust, genome-wide alternative to perform functional genome analysis. Though these approaches have been used in a large number of studies involving pathogenic and clinically relevant bacteria, they have received little attention in the fields of commensal and potentially beneficial bacteria, including probiotic microorganisms. In this chapter, we describe the implementation of the TIS method Transposon-Directed Insertion Sequencing to describe the set of essential genes in a representative strain of a genus encompassing several commensal and potentially probiotic bacteria and discuss considerations when applying similar methodological approaches to other Bifidobacterium species/strains of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tojo R, Suárez A, Clemente MG et al (2014) Intestinal microbiota in health and disease: role of bifidobacteria in gut homeostasis. World J Gastroenterol 20:15163–15176

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ventura M, Turroni F, Lugli GA, van Sinderen D (2014) Bifidobacteria and humans: our special friends, from ecological to genomics perspectives. J Sci Food Agric 94:163–168

    Article  CAS  PubMed  Google Scholar 

  3. Bottacini F, van Sinderen D, Ventura M (2017) Omics of bifidobacteria: research and insights into their health-promoting activities. Biochem J 474:4137–4152. https://doi.org/10.1042/BCJ20160756

    Article  PubMed  CAS  Google Scholar 

  4. Cronin M, Ventura M, Fitzgerald GF, Van Sinderen D (2011) Progress in genomics, metabolism and biotechnology of bifidobacteria. Int J Food Microbiol 149:4–18

    Article  CAS  PubMed  Google Scholar 

  5. Brancaccio VF, Zhurina DS, Riedel CU (2013) Tough nuts to crack: site-directed mutagenesis of bifidobacteria remains a challenge. Bioengineered 4:197–202. https://doi.org/10.4161/bioe.23381

    Article  PubMed  PubMed Central  Google Scholar 

  6. O’Callaghan A, Bottacini F, O’Connell Motherway M, van Sinderen D (2015) Pangenome analysis of Bifidobacterium longum and site-directed mutagenesis through by-pass of restriction-modification systems. BMC Genomics 16:832. https://doi.org/10.1186/s12864-015-1968-4

  7. Hidalgo-Cantabrana C, Sánchez B, Álvarez-Martín P et al (2015) A single mutation in the gene responsible for the mucoid phenotype of Bifidobacterium animalis subsp. lactis confers surface and functional characteristics. Appl Environ Microbiol 81:7960–7968. https://doi.org/10.1128/AEM.02095-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Sakaguchi K, He J, Tani S et al (2012) A targeted gene knockout method using a newly constructed temperature-sensitive plasmid-mediated homologous recombination in Bifidobacterium longum. Appl Microbiol Biotechnol 95:499–509. https://doi.org/10.1007/s00253-012-4090-4

    Article  PubMed  CAS  Google Scholar 

  9. O’Connell Motherway M, Watson D, Bottacini F et al (2014) Identification of restriction-modification systems of Bifidobacterium animalis subsp. lactis CNCM I-2494 by SMRT sequencing and associated methylome analysis. PLoS One 9:e94875. https://doi.org/10.1371/journal.pone.0094875

    Article  PubMed Central  CAS  Google Scholar 

  10. O’Connell Motherway M, O’Driscoll J, Fitzgerald GF, Van Sinderen D (2009) Overcoming the restriction barrier to plasmid transformation and targeted mutagenesis in Bifidobacterium breve UCC2003. Microb Biotechnol 2:321–332. https://doi.org/10.1111/j.1751-7915.2008.00071.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Bottacini F, Morrissey R, Roberts RJ et al (2018) Comparative genome and methylome analysis reveals restriction/modification system diversity in the gut commensal Bifidobacterium breve. Nucleic Acids Res 46:1860–1877. https://doi.org/10.1093/nar/gkx1289

    Article  PubMed  CAS  Google Scholar 

  12. Ruiz L, Motherway MOC, Lanigan N, van Sinderen D (2013) Transposon mutagenesis in Bifidobacterium breve: construction and characterization of a Tn5 transposon mutant library for Bifidobacterium breve UCC2003. PLoS One 8. https://doi.org/10.1371/journal.pone.0064699

  13. Choi KH, Kim KJ (2009) Applications of transposon-based gene delivery system in bacteria. J Microbiol Biotechnol 19:217–228

    PubMed  CAS  Google Scholar 

  14. Picardeau M (2010) Transposition of fly mariner elements into bacteria as a genetic tool for mutagenesis. Genetica 138:551–558. https://doi.org/10.1007/s10709-009-9408-5

    Article  PubMed  CAS  Google Scholar 

  15. Goryshin IY, Reznikoff WS (1998) Tn5 in vitro transposition. J Biol Chem 273:7367–7374. https://doi.org/10.1074/jbc.273.13.7367

    Article  PubMed  CAS  Google Scholar 

  16. Scherens B, Goffeau A (2004) The uses of genome-wide yeast mutant collections. Genome Biol 5:229. https://doi.org/10.1186/gb-2004-5-7-229

    Article  PubMed  PubMed Central  Google Scholar 

  17. Price MN, Wetmore KM, Waters RJ et al (2018) Mutant phenotypes for thousands of bacterial genes of unknown function. Nature 557:503–509. https://doi.org/10.1038/s41586-018-0124-0

    Article  PubMed  CAS  Google Scholar 

  18. Langridge GC, Phan MD, Turner DJ et al (2009) Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. Genome Res 19:2308–2316. https://doi.org/10.1101/gr.097097.109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. van Opijnen T, Bodi KL, Camilli A (2009) Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat Methods 6:767–772. https://doi.org/10.1038/nmeth.1377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Gawronski JD, Wong SMS, Giannoukos G et al (2009) Tracking insertion mutants within libraries by deep sequencing and a genome-wide screen for Haemophilus genes required in the lung. Proc Natl Acad Sci U S A 106:16422–16427. https://doi.org/10.1073/pnas.0906627106

    Article  PubMed  PubMed Central  Google Scholar 

  21. Goodman AL, McNulty NP, Zhao Y et al (2009) Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe 6:279–289. https://doi.org/10.1016/j.chom.2009.08.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Ruiz L, Bottacini F, Boinett CJ et al (2017) The essential genomic landscape of the commensal Bifidobacterium breve UCC2003. Sci Rep 7. https://doi.org/10.1038/s41598-017-05795-y

  23. Licandro-Seraut H, Scornec H, Pédron T et al (2014) Functional genomics of Lactobacillus casei establishment in the gut. Proc Natl Acad Sci U S A 111:E3101–E3109. https://doi.org/10.1073/pnas.1411883111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Hutchison CA, Chuang RY, Noskov VN et al (2016) Design and synthesis of a minimal bacterial genome. Science 351(6280):aad6253. https://doi.org/10.1126/science.aad6253

    Article  PubMed  CAS  Google Scholar 

  25. Sakanaka M, Nakakawaji S, Nakajima S et al (2018) A transposon mutagenesis system for Bifidobacterium longum subsp. longum based on an IS3 family insertion sequence, ISBlo11. Appl Environ Microbiol 84(17):e00824-18. https://doi.org/10.1128/AEM.00824-18

    Article  PubMed  PubMed Central  Google Scholar 

  26. Barquist L, Mayho M, Cummins C et al (2016) The TraDIS toolkit: sequencing and analysis for dense transposon mutant libraries. Bioinformatics 32(7):1109–1111. https://doi.org/10.1093/bioinformatics/btw022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Dembek M, Barquist L, Boinett CJ et al (2015) High-throughput analysis of gene essentiality and sporulation in Clostridium difficile. MBio 6:2e02383–2e02314. https://doi.org/10.1128/mBio.02383-14

    Article  CAS  Google Scholar 

  28. DeJesus MA, Ambadipudi C, Baker R et al (2015) TRANSIT—a software tool for Himar1 TnSeq analysis. PLoS Comput Biol 11:e1004401. https://doi.org/10.1371/journal.pcbi.1004401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Page AJ, Bastkowski S, Yasir M, et al (2019) AlbaTraDIS: Comparative analysis of large datasets from parallel transposon mutagenesis experiments. bioRxiv 593624. https://doi.org/10.1101/593624

  30. Solaimanpour S, Sarmiento F, Mrázek J (2015) Tn-seq explorer: a tool for analysis of high-throughput sequencing data of transposon mutant libraries. PLoS One 10:e0126070. https://doi.org/10.1371/journal.pone.0126070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Mccoy KM, Antonio ML, Van Opijnen T (2017) MAGenTA: a galaxy implemented tool for complete Tn-Seq analysis and data visualization. Bioinformatics 33(17):2781–2783. https://doi.org/10.1093/bioinformatics/btx320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Carver T, Harris SR, Berriman M et al (2012) Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 28:464–469. https://doi.org/10.1093/bioinformatics/btr703

    Article  PubMed  CAS  Google Scholar 

  33. Robinson JT, Thorvaldsdóttir H, Winckler W et al (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mitchell AL, Attwood TK, Babbitt PC et al (2019) InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res 47:D351–D360. https://doi.org/10.1093/nar/gky1100

    Article  PubMed  CAS  Google Scholar 

  35. El-Gebali S, Mistry J, Bateman A et al (2019) The Pfam protein families database in 2019. Nucleic Acids Res 47:D427–D432. https://doi.org/10.1093/nar/gky995

    Article  PubMed  CAS  Google Scholar 

  36. Enright AJ, Van Dongen S, Ouzounis CA (2002) An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 30(7):1575–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. O’Connell Motherway M, Zomer A, Leahy SC et al (2011) Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor. Proc Natl Acad Sci U S A 108:11217–11222. https://doi.org/10.1073/pnas.1105380108

    Article  PubMed  PubMed Central  Google Scholar 

  38. Paulsen IT, Cain AK, Hassan KA (2017) Physical enrichment of transposon mutants from saturation mutant libraries using the TraDISort approach. Mob Genet Elements 7:1–7. https://doi.org/10.1080/2159256x.2017.1313805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Yasir M, Keith Turner A, Bastkowski S et al (2020) TRADIS-XPress: a high-resolution whole-genome assay identifies novel mechanisms of triclosan action and resistance. Genome Res 30:239–249. https://doi.org/10.1101/gr.254391.119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Troy EB, Lin T, Gao L et al (2013) Understanding barriers to Borrelia burgdorferi dissemination during infection using massively parallel sequencing. Infect Immun 81:2347–2357. https://doi.org/10.1128/IAI.00266-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Chao MC, Abel S, Davis BM, Waldor MK (2016) The design and analysis of transposon-insertion sequencing experiments. Nat Rev Microbiol 14:119–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Sydenham TV, Sóki J, Hasman H et al (2015) Identification of antimicrobial resistance genes in multidrug-resistant clinical Bacteroides fragilis isolates by whole-genome shotgun sequencing. Anaerobe 31:59–64. https://doi.org/10.1016/j.anaerobe.2014.10.009

    Article  PubMed  CAS  Google Scholar 

  44. Rubin EJ, Akerley BJ, Novik VN et al (1999) In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc Natl Acad Sci U S A 96:1645–1650. https://doi.org/10.1073/pnas.96.4.1645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Green B, Bouchier C, Fairhead C et al (2012) Insertion site preference of Mu, Tn5, and Tn7 transposons. Mob DNA 3:3. https://doi.org/10.1186/1759-8753-3-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Skurnik D, Roux D, Aschard H et al (2013) A comprehensive analysis of in vitro and in vivo genetic fitness of Pseudomonas aeruginosa using high-throughput sequencing of transposon libraries. PLoS Pathog 9:e1003582. https://doi.org/10.1371/journal.ppat.1003582

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Pritchard JR, Chao MC, Abel S et al (2014) ARTIST: high-resolution genome-wide assessment of fitness using transposon-insertion sequencing. PLoS Genet 10(11):e1004782. https://doi.org/10.1371/journal.pgen.1004782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Fu Y, Waldor MK, Mekalanos JJ (2013) Tn-seq analysis of Vibrio cholerae intestinal colonization reveals a role for T6SS-mediated antibacterial activity in the host. Cell Host Microbe 14:652–663. https://doi.org/10.1016/j.chom.2013.11.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Chaudhuri RR, Morgan E, Peters SE et al (2013) Comprehensive assignment of roles for Salmonella typhimurium genes in intestinal colonization of food-producing animals. PLoS Genet 9:e1003456. https://doi.org/10.1371/journal.pgen.1003456

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Xu J, Mahowald MA, Ley RE et al (2007) Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol 5:1574–1586. https://doi.org/10.1371/journal.pbio.0050156

    Article  CAS  Google Scholar 

  51. Abel S, Abel zur Wiesch P, Davis BM, Waldor MK (2015) Analysis of bottlenecks in experimental models of infection. PLoS Pathog 11:e1004823. https://doi.org/10.1371/journal.ppat.1004823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

F.B. and D.v.S. are members of APC Microbiome Ireland, which is funded by Science Foundation Ireland (SFI) through the Irish Government’s National Development Plan (Grant Numbers SFI/12/RC/2273-P1 and SFI/12/RC/2273-P2). L.R. has received funding from the Spanish State Research Agency (RTI2018-095021-J-I00).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lorena Ruiz or Douwe van Sinderen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ruiz, L., Bottacini, F., Semenec, L., Cain, A., van Sinderen, D. (2022). A Proposed Framework to Identify Dispensable and Essential Functions in Bifidobacteria: Case Study of Bifidobacterium breve UCC2003 as a Prototype of Its Genus. In: Zhang, R. (eds) Essential Genes and Genomes. Methods in Molecular Biology, vol 2377. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1720-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1720-5_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1719-9

  • Online ISBN: 978-1-0716-1720-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics