Skip to main content

Oxidative Stress and Cellular Dysfunction in Neurodegenerative Disease

  • Protocol
  • First Online:
Neurodegenerative Diseases Biomarkers

Part of the book series: Neuromethods ((NM,volume 173))

  • 1363 Accesses

Abstract

Neurodegenerative diseases are conditions characterized by irreversible loss of neurons and loss of cognitive and motor function, mostly occurring in elderly people. The increasing age has been the most consistent risk factor for developing a neurodegenerative disorder. Interlinking of oxidative stress and neurodegeneration is well established, indicating that the overproduction of reactive oxygen/nitrogen/sulfur species (ROS/RNS/RSS) correlates with progressive neurodegeneration. It is well defined that neurons are prone to oxidative damage due to the enrichment of neuronal membranes with polyunsaturated fatty acids (PUFA) along with highly dynamic and regiospecific oxygen consumption by brain cells and a weak antioxidant defense. Oxidative stress (OS) refers to the condition where imbalance between oxidants and antioxidants leads to the elevation in ROS/RNS/RSS levels in biological systems. Increasing evidence has demonstrated the dysfunction of redox signaling and its regulation leads to oxidative stress in the cellular environment. Thus, disruption as well as dysregulation of redox signaling is found to be linked with various neurodegenerative disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS). The present chapter gives insight about how redox mediated OS can lead to neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albers DS, Beal MF (2000) Mitochondrial dysfunction and oxidative stress in aging and neurodegenerative disease. J Neural Transm Suppl 59:133–154. https://doi.org/10.1007/978-3-7091-6781-6_16

    Article  CAS  PubMed  Google Scholar 

  2. Hamer M, Chida Y (2009) Physical activity and risk of neurodegenerative disease: a systematic review of prospective evidence. Psychol Med 39:3–11. https://doi.org/10.1017/S0033291708003681

    Article  CAS  PubMed  Google Scholar 

  3. Liu Z, Zhou T, Ziegler AC et al (2017) Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications. Oxid Med Cell Longev 2017:2525967. 11 pages. https://doi.org/10.1155/2017/2525967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Singh A, Kukreti R, Saso L et al (2019) Oxidative stress: a key modulator in neurodegenerative diseases. Molecules 24(8):1583, 1-20. https://doi.org/10.3390/molecules24081583

    Article  CAS  PubMed Central  Google Scholar 

  5. Silvade HR, Khan NL, Wood NW (2000) The genetics of Parkinson’s disease. Curr Opin Genet Dev 10:292–298. https://doi.org/10.1016/s0959-437x(00)00082-4

    Article  Google Scholar 

  6. Rijkde MC, Launer LJ, Berger K et al (2000) Prevalence of Parkinson’s disease in Europe: a collaborative study of population-based cohorts. Neurology 54:S21–SS3

    Google Scholar 

  7. Bekris LM, Mata IF, Zabetian CP (2010) The genetics of Parkinson disease. J Geriatr Psychiatry Neurol 23:228–242. https://doi.org/10.1177/0891988710383572

    Article  PubMed  PubMed Central  Google Scholar 

  8. Farrer MJ (2006) Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet 7:306–318. https://doi.org/10.1038/nrg1831

    Article  CAS  PubMed  Google Scholar 

  9. Alzheimer’s Association (2011) 2011 Alzheimer’s disease facts and figures. Alzheimers Dement 7:208–244. https://doi.org/10.1016/j.jalz.2011.02.004

    Article  Google Scholar 

  10. Sbodio JI, Snyder SH, Paul BD (2019) Redox mechanisms in neurodegeneration: from disease outcomes to therapeutic opportunities. Antioxid Redox Signal 30(11):1450–1499. https://doi.org/10.1089/ars.2017.7321

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zuo L, Zhou T, Pannell BK et al (2015) Biological and physiological role of reactive oxygen species—the good, the bad and the ugly. Acta Physiol (Oxf) 214:329–348. https://doi.org/10.1111/apha.12515

    Article  CAS  Google Scholar 

  12. He F, Zuo L (2015) Redox roles of reactive oxygen species in cardiovascular diseases. Int J Mol Sci 16:27770–27780. https://doi.org/10.3390/ijms161126059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 3(4):461–491. https://doi.org/10.3233/JPD-130230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rego AC, Oliveira CR (2003) Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases. Neurochem Res 28:1563–1574. https://doi.org/10.1023/a:1025682611389

    Article  CAS  PubMed  Google Scholar 

  15. Fukai T, Ushio-Fukai M (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15:1583–1606. https://doi.org/10.1089/ars.2011.3999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gadoth N, Goebel HH (2011) Oxidative stress and free radical damage in neurology. Humana Press, New York, viii, 323 p

    Book  Google Scholar 

  17. Floyd RA, Carney JM (1992) Free radical damage to protein and DNA: mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann Neurol 32(Suppl):S22–S27. https://doi.org/10.1002/ana.410320706

    Article  CAS  PubMed  Google Scholar 

  18. Salim S (2017) Oxidative stress and the central nervous system. J Pharmacol Exp Ther 360:201–205. https://doi.org/10.1124/jpet.116.237503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nathan J, Maria C, Fiorello L et al (2018) 13 reasons why the brain is susceptible to oxidative stress. Redox Biol 15:490–503. https://doi.org/10.1016/j.redox.2018.01.008

    Article  CAS  Google Scholar 

  20. Gemma C, Vila J, Bachstetter A et al (2007) Chapter 15-oxidative stress and the aging brain: from theory to prevention. In: Riddle DR (ed) Brain aging: models, methods, and mechanisms. CRC Press, Boca Raton, FL

    Google Scholar 

  21. Chiurchiù V, Orlacchio A, Maccarrone M (2016) Is modulation of oxidative stress an answer? The state of the art of redox therapeutic actions in neurodegenerative diseases. Oxidative Med Cell Longev 2016:1–11. https://doi.org/10.1155/2016/7909380

    Article  CAS  Google Scholar 

  22. Saxena S, Caroni P (2011) Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration. Neuron 71:35–48. https://doi.org/10.1016/j.neuron.2011.06.031

    Article  CAS  PubMed  Google Scholar 

  23. Harvey L, Arnold B, Lawrence Z et al (1999) Molecular cell biology, 4th edn. W.H. Freeman, pp 197–433. 4Rev Ed edition

    Google Scholar 

  24. Commoner B, Townsend J, Pake GE (1954) Free radicals in biological materials. Nature 174:689–691. https://doi.org/10.1038/174689a0

    Article  CAS  PubMed  Google Scholar 

  25. McCord JM (2000) The evolution of free radicals and oxidative stress. Am J Med 108:652–659. https://doi.org/10.1016/s0002-9343(00)00412-5

    Article  CAS  PubMed  Google Scholar 

  26. Pham-Huy LA, He H, Pham-Huy C (2008) Free radicals, antioxidants in disease and health. Int J Biomed Sci 4:89–96

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Anas AA, Wiersinga WJ, de Vos AF et al (2010) Recent insights into the pathogenesis of bacterial sepsis. Neth J Med 68(4):147–152

    CAS  PubMed  Google Scholar 

  28. Victor VM, Rocha M, De la Fuente M (2004) Immune cells: free radicals and antioxidants in sepsis. Int Immunopharmacol 4:327–347. https://doi.org/10.1016/j.intimp.2004.01.020

    Article  CAS  PubMed  Google Scholar 

  29. Webster NR, Nunn JF (1988) Molecular structure of free radicals and their importance in biological reactions. Br J Anaesth 60(1):98–108

    Article  CAS  PubMed  Google Scholar 

  30. Cadenas E (2004) Mitochondrial free radical production and cell signaling. Mol Aspects Med 25(1- 2):17–26. https://doi.org/10.1016/j.mam.2004.02.005

    Article  CAS  PubMed  Google Scholar 

  31. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87(1):315–424. https://doi.org/10.1152/physrev.00029.2006

    Article  CAS  PubMed  Google Scholar 

  32. Aruoma OI, Halliwell B, Gajewski E et al (1991) Copper-ion-dependent damage to the bases in DNA in the presence of hydrogen peroxide. Biochem J 273(Pt 3):601–604. https://doi.org/10.1042/bj2730601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lenaz G (2001) The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life 52(3–5):159–164. 30. https://doi.org/10.1080/15216540152845957

    Article  CAS  PubMed  Google Scholar 

  34. Matesanz N, Lafuente N, Azcutia V et al (2007) Xanthine oxidase derived extracellular superoxide anions stimulate activator protein 1 activity and hypertrophy in human vascular smooth muscle via c-Jun N-terminal kinase and p38 mitogen-activated protein kinases. J Hypertens 25(3):609–618. https://doi.org/10.1097/HJH.0b013e328013e7c4

    Article  CAS  PubMed  Google Scholar 

  35. Zangar RC, Davydov DR, Verma S (2004) Mechanisms that regulate production of reactive oxygen species by cytochrome P450. Toxicol Appl Pharmacol 199(3):316–331. https://doi.org/10.1016/j.taap.2004.01.018

    Article  CAS  PubMed  Google Scholar 

  36. Schrader M, Fahimi HD (2004) Mammalian peroxisomes and reactive oxygen species. Histochem Cell Biol 122(4):383–393. https://doi.org/10.1007/s00418-004-0673-1

    Article  CAS  PubMed  Google Scholar 

  37. Li WG, Miller FJ Jr, Zhang HJ et al (2001) H(2)O(2)-induced O(2) production by a non-phagocytic NAD(P)H oxidase causes oxidant injury. J Biol Chem 276(31):29251–29256

    Article  CAS  PubMed  Google Scholar 

  38. D’Autreaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8(10):813–824. https://doi.org/10.1038/nrm2256

    Article  CAS  PubMed  Google Scholar 

  39. Imlay JA, Chin SM, Linn S (1988) Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240:640–642. https://doi.org/10.1126/science.2834821

    Article  CAS  PubMed  Google Scholar 

  40. Yamazaki I, Piette LH (1990) ESR spin-trapping studies on the reaction of Fe2+ ions with H2O2-reactive species in oxygen toxicity in biology. J Biol Chem 265:13589–13594

    Article  CAS  PubMed  Google Scholar 

  41. Yu BP (1994) Cellular defenses against damage from reactive oxygen species. Physiol Rev 74(1):139–162. https://doi.org/10.1152/physrev.1994.74.1.139

    Article  CAS  PubMed  Google Scholar 

  42. Mates JM, Sanchez-Jimenez F (1999) Antioxidant enzymes and their implications in pathophysiologic processes. Front Biosci 4:D339–D345. https://doi.org/10.2741/mates

    Article  CAS  PubMed  Google Scholar 

  43. Lloyd RV, Hanna PM, Mason RP (1997) The origin of the hydroxyl radical oxygen in the Fenton reaction. Free Rad Biol Med 22:885–888. https://doi.org/10.1016/s0891-5849(96)00432-7

    Article  CAS  PubMed  Google Scholar 

  44. Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Rad Biol Med 18:321–336. https://doi.org/10.1016/0891-5849(94)00159-h

    Article  CAS  PubMed  Google Scholar 

  45. Clayton PT (2017) Inherited disorders of transition metal metabolism: an update. J Inherit Metab Dis 40:519–529. https://doi.org/10.1007/s10545-017-0030-x

    Article  CAS  PubMed  Google Scholar 

  46. Reed GA (1987) Co-oxidation of xenobiotics: lipid peroxyl derivatives as mediators of metabolism. Chem Phys Lipids 44:127–148. https://doi.org/10.1016/0009-3084(87)90047-8

    Article  CAS  PubMed  Google Scholar 

  47. Spiteller G, Afzal M (2014) The action of peroxyl radicals, powerful deleterious reagents, explains why neither cholesterol nor saturated fatty acids cause atherogenesis and age-related diseases. Chemistry 20:14928–14945. https://doi.org/10.1002/chem.201404383

    Article  CAS  PubMed  Google Scholar 

  48. Ayala A, Munoz MF, Arguelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med Cell Longev 2014:360438. https://doi.org/10.1155/2014/360438

    Article  CAS  Google Scholar 

  49. De Grey AD (2002) HO2*: the forgotten radical. DNA Cell Biol 21:251–257. https://doi.org/10.1089/104454902753759672

    Article  PubMed  Google Scholar 

  50. Agnez-Lima LF, Melo JT, Silva AE et al (2012) Review DNA damage by singlet oxygen and cellular protective mechanisms. Mutat Res Rev Mutat Res 751(1):1–14. https://doi.org/10.1016/j.mrrev.2011.12.005

    Article  CAS  Google Scholar 

  51. Hampton MB, Kettle AJ, Winterbourn CC (1998) Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92(9):3007–3017

    Article  CAS  PubMed  Google Scholar 

  52. Kanovasky JR (1989) Singlet oxygen production by biological systems. Chem Biol Interact 70(1–2):1–28. https://doi.org/10.1016/0009-2797(89)90059-8

    Article  Google Scholar 

  53. Chan HWS (1971) Singlet oxygen analogs in biological systems: coupled oxygenation of 1,3-dienes by soybean lipoxidase. J Am Chem Soc 93(9):2357–2358. https://doi.org/10.1021/ja00738a064

    Article  CAS  Google Scholar 

  54. Hayaishi O, Nozaki M (1969) Nature and mechanisms of oxygenases. Science 164:389–396. https://doi.org/10.1126/science.164.3878.389

    Article  CAS  PubMed  Google Scholar 

  55. Kanofsky JR (1983) Singlet oxygen production by lactoperoxidase. J Biol Chem 258(10):5991–5993. https://doi.org/10.1016/S0021-9258(18)32358-5

    Article  CAS  PubMed  Google Scholar 

  56. Sies H, Menck CF (1992) Singlet oxygen induced DNA damage. Mutat Res 275:367–375. https://doi.org/10.1016/0921-8734(92)90039-r

    Article  CAS  PubMed  Google Scholar 

  57. Bian K, Murad F (2003) Nitric oxide (NO)—biogeneration, regulation, and relevance to human diseases. Front Biosci 8:d264–d278. https://doi.org/10.2741/997

    Article  CAS  PubMed  Google Scholar 

  58. Ignarro LJ (1990) Biosynthesis and metabolism of endothelium-derived nitric oxide. Annu Rev Pharmacol Toxicol 30:535–560. https://doi.org/10.1146/annurev.pa.30.040190.002535

    Article  CAS  PubMed  Google Scholar 

  59. Andrew PJ, Mayer B (1999) Enzymatic function of nitric oxide synthases. Cardiovasc Res 43(3):521–531. https://doi.org/10.1016/s0008-6363(99)00115-7

    Article  CAS  PubMed  Google Scholar 

  60. Ignarro LJ, Buga GM, Wood KS et al (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A 84:9265–9269. https://doi.org/10.1073/pnas.84.24.9265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wink DA, Mitchell JB (1998) Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med 25(4–5):434–456. https://doi.org/10.1016/s0891-5849(98)00092-6

    Article  CAS  PubMed  Google Scholar 

  62. Stamler JS (1994) Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 78(6):931–936. https://doi.org/10.1016/0092-8674(94)90269-0

    Article  CAS  PubMed  Google Scholar 

  63. Koshland DE Jr (1992) The molecule of the year. Science 258(5090):1861. https://doi.org/10.1126/science.1470903

    Article  PubMed  Google Scholar 

  64. Radi R (2013) Peroxynitrite, a stealthy biological oxidant. J Biol Chem 288:26464–26472. https://doi.org/10.1074/jbc.R113.472936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Phys 271:C1424–C1437. https://doi.org/10.1152/ajpcell.1996.271.5.C1424

    Article  CAS  Google Scholar 

  66. Ischiropoulos H, Al-Mehdi AB (1995) Peroxynitrite mediated oxidative protein modifications. FEBS Lett 364(3):279–282. https://doi.org/10.1016/0014-5793(95)00307-u

    Article  CAS  PubMed  Google Scholar 

  67. Luc R, Vergely C (2008) Forgotten radicals in biology. Int J Biomed Sci 4:255–259

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kirsch M, Korth HG, Sustmann R et al (2002) The pathobiochemistry of nitrogen dioxide. Biol Chem 383:389–399. https://doi.org/10.1515/BC.2002.043

    Article  CAS  PubMed  Google Scholar 

  69. Halliwell B, Hu ML, Louie S et al (1992) Interaction of nitrogen dioxide with human plasma. Antioxidant depletion and oxidative damage. FEBS Lett 313:62–66. https://doi.org/10.1016/0014-5793(92)81185-O

    Article  CAS  PubMed  Google Scholar 

  70. Giles GI, Nasim MJ, Ali W et al (2017) The reactive sulfur species concept: 15 years on. Antioxidants 6:E38. https://doi.org/10.3390/antiox6020038

    Article  CAS  PubMed  Google Scholar 

  71. Gruhlke MC, Slusarenko AJ (2012) The biology of reactive sulfur species (RSS). Plant Physiol Biochem 59:98–107. https://doi.org/10.1016/j.plaphy.2012.03.016

    Article  CAS  PubMed  Google Scholar 

  72. Ghezzi P, Bonetto V, Fratelli M (2005) Thiol-disulfide balance: from the concept of oxidative stress to that of redox regulation. Antioxid Redox Signal 7:964–972. https://doi.org/10.1089/ars.2005.7.964

    Article  CAS  PubMed  Google Scholar 

  73. Ghezzi P, Chan P (2017) Redox proteomics applied to the thiol secretome. Antioxid Redox Signal 26:299–312. https://doi.org/10.1089/ars.2016.6732

    Article  CAS  PubMed  Google Scholar 

  74. Libiad M, Yadav PK, Vitvitsky V et al (2014) Organization of the human mitochondrial hydrogen sulfide oxidation pathway. J Biol Chem 289:30901–30910. https://doi.org/10.1074/jbc.M114.602664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mishanina TV, Libiad M, Banerjee R (2015) Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways. Nat Chem Biol 11:457–464. https://doi.org/10.1038/nchembio.1834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jackson MR, Melideo SL, Jorns MS (2012) Human sulfide: quinone oxidoreductase catalyzes the first step in hydrogen sulfide metabolism and produces a sulfane sulfur metabolite. Biochemistry 51:6804–6815. https://doi.org/10.1021/bi300778t

    Article  CAS  PubMed  Google Scholar 

  77. Ranguelova K, Rice AB, Lardinois OM et al (2013) Sulfite-mediated oxidation of myeloperoxidase to a free radical: immuno-spin trapping detection in human neutrophils. Free Radic Biol Med 60:98–106. https://doi.org/10.1016/j.freeradbiomed.2013.01.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Droge W (2002) Review Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95. https://doi.org/10.1152/physrev.00018.2001

    Article  CAS  PubMed  Google Scholar 

  79. Halliwell B, Gutteridge JM (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, Midsomer Norton

    Google Scholar 

  80. Dizdaroglu M, Jaruga P, Birincioglu M et al (2002) Free radical-induced damage to DNA: mechanisms and measurement. Free Radic Biol Med 32(11):1102–1115. https://doi.org/10.1016/s0891-5849(02)00826-2

    Article  CAS  PubMed  Google Scholar 

  81. Barja G (2000) The flux of free radical attack through mitochondrial DNA is related to aging rate. Aging 12(5):342–355. https://doi.org/10.1007/BF03339859

    Article  CAS  PubMed  Google Scholar 

  82. Yermilov V, Rubio J, Ohshima H (1995) Formation of 8-nitroguaninein DNA treated with peroxynitrite in vitro and its rapid removal from DNA by depurination. FEBS Lett 376(3):207–210. https://doi.org/10.1016/0014-5793(95)01281-6

    Article  CAS  PubMed  Google Scholar 

  83. Loeb LA, Preston BD (1986) Mutagenesis by apurinic/apyrimidinic sites. Annu Rev Genet 20:201–230. https://doi.org/10.1146/annurev.ge.20.120186.001221

    Article  CAS  PubMed  Google Scholar 

  84. Dean RT, Fu S, Stocker R et al (1997) Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324:1–18. https://doi.org/10.1042/bj3240001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Butterfield DA, Koppal T, Howard B et al (1998) Structural and functional changes in proteins induced by free radical-mediated oxidative stress and protective action of the antioxidants N-tert-butyl-alpha-phenylnitrone and vitamin E. Ann N Y Acad Sci 854:448–462. https://doi.org/10.1111/j.1749-6632.1998.tb09924.x

    Article  CAS  PubMed  Google Scholar 

  86. Brodie E, Reed DJ (1990) Cellular recovery of glyceraldehyde-3- phosphate dehydrogenase activity and thiol status after exposure to hydroperoxide. Arch Biochem Biophys 276(1):210–212. https://doi.org/10.1016/0003-9861(90)90028-w

    Article  Google Scholar 

  87. Pryor WA, Jin X, Squadrito GL (1994) One- and two-electron oxidations of methionine by peroxynitrite. Proc Natl Acad Sci U S A 91(23):11173–11177. https://doi.org/10.1073/pnas.91.23.11173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Berlett BS, Stadtman E (1997) Protein oxidation in aging, disease, and oxidative stress. J Bio Chem 272(33):20313–20316. https://doi.org/10.1074/jbc.272.33.20313

    Article  CAS  Google Scholar 

  89. Kikugawa K, Kato T, Okamoto Y (1994) Damage of amino acids and proteins induced by nitrogen dioxide, a free radical toxin, in air. Free Rad Biol Med 16(3):373–382. https://doi.org/10.1016/0891-5849(94)90039-6

    Article  CAS  PubMed  Google Scholar 

  90. Uchida K, Kawakishi S (1993) 2-oxohistidine as a novel biological marker for oxidatively modified proteins. FEBS Lett 332(3):208–210. https://doi.org/10.1016/0014-5793(93)80632-5

    Article  CAS  PubMed  Google Scholar 

  91. Garrison WM (1987) Reaction mechanisms in radiolysis of peptides, polypeptides, and proteins. Chem Rev 8792:381–398. https://doi.org/10.1021/cr00078a006.

  92. Spickett CM (2013) The lipid peroxidation product 4-hydroxy-2-nonenal: advances in chemistry and analysis. Redox Biol 1:145–152. https://doi.org/10.1016/j.redox.2013.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yin H, Xu L, Porter NA (2011) Free radical lipid peroxidation: mechanisms and analysis. Chem Rev 111:5944–5972. https://doi.org/10.1021/cr200084z

    Article  CAS  PubMed  Google Scholar 

  94. Marnett LJ (1999) Lipid peroxidation—DNA damage by malondialdehyde. Mutat Res 424(1–2):83–95

    Article  CAS  PubMed  Google Scholar 

  95. Halliwell B, Gutteridge JMC (2015) Free radicals in biology & medicine. Oxford University Press, 5th edition

    Book  Google Scholar 

  96. Hazra TK, Das A, Das S et al (2007) Oxidative DNA damage repair in mammalian cells: a new perspective. DNA Repair (Amst) 6(4):470–480. https://doi.org/10.1016/j.dnarep.2006.10.011

    Article  CAS  Google Scholar 

  97. Szczepanowska K, Trifunovic A (2015) Different faces of mitochondrial DNA mutators. Biochim Biophys Acta 1847(11):1362–1372. https://doi.org/10.1016/j.bbabio.2015.05.016

    Article  CAS  PubMed  Google Scholar 

  98. Pinto M, Moraes CT (2015) Mechanisms linking mtDNA damage and aging. Free Radic Biol Med 85:250–258. https://doi.org/10.1016/j.freeradbiomed.2015.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wu Y, Chena M, Jiang J (2019) Mitochondrial dysfunction in neurodegenerative diseases and drug targetsvia apoptotic signaling. Mitochondrion 49:35–45. https://doi.org/10.1016/j.mito.2019.07.003

    Article  CAS  PubMed  Google Scholar 

  100. Scheibye-Knudsen M, Fang EF, Croteau DL et al (2015) Protecting the mitochondrial powerhouse. Trends Cell Biol 25:158–170. https://doi.org/10.1016/j.tcb.2014.11.002

    Article  CAS  PubMed  Google Scholar 

  101. Wallace DC (2013) A mitochondrial bioenergetic etiology of disease. J Clin Invest 123:1405–1412. https://doi.org/10.1172/JCI61398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Farshbaf MJ, Ghaedi K (2017) Huntington’s disease and mitochondria. Neurotox Res 32:518–529. https://doi.org/10.1007/s12640-017-9766-1

    Article  CAS  Google Scholar 

  103. Carmo C, Naia L, Lopes C et al (2018) Mitochondrial dysfunction in Huntington’s disease, polyglutamine disorders. Adv Exp Med Biol 1049:59–83. https://doi.org/10.1007/978-3-319-71779-1_3

    Article  CAS  PubMed  Google Scholar 

  104. Dixon SJ, Lemberg KM, Lamprecht MR et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072. https://doi.org/10.1016/j.cell.2012.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Dixon SJ (2017) Ferroptosis: bug or feature? Immunol Rev 277:150–157. https://doi.org/10.1111/imr.12533

    Article  CAS  PubMed  Google Scholar 

  106. Galluzzi L, Vitale I, Aaronson SA et al (2018) Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ 25:486–541. https://doi.org/10.1038/s41418-017-0012-4

    Article  PubMed  PubMed Central  Google Scholar 

  107. Kenny EM, Fidan E, Yang Q et al (2019) Ferroptosis contributes to neuronal death and functional outcome after traumatic brain injury. Crit Care Med 47:410–418. https://doi.org/10.1097/ccm.0000000000003555

    Article  PubMed  PubMed Central  Google Scholar 

  108. Guiney SJ, Adlard PA, Bush AI et al (2017) Ferroptosis and cell death mechanisms in Parkinson’s disease. Neurochem Int 104:34–48. https://doi.org/10.1016/j.neuint.2017.01.004

    Article  CAS  PubMed  Google Scholar 

  109. Devos D, Moreau C, Devedjian JC et al (2014) Targeting chelatable iron as a therapeutic modality in Parkinson’s disease. Antioxid Redox Signal 21:195–210. https://doi.org/10.1089/ars.2013.5593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lane DJR, Ayton S, Bush AI (2018) Iron and Alzheimer’s disease: an update on emerging mechanisms. J Alzheimers Dis 64:S379–S395. https://doi.org/10.3233/jad-179944

    Article  CAS  PubMed  Google Scholar 

  111. Belaidi AA, Bush AI (2016) Iron neurochemistry in Alzheimer’s disease and Parkinson’s disease: targets for therapeutics. J Neurochem 139(Suppl. 1):179–197. https://doi.org/10.1111/jnc.13425

    Article  CAS  PubMed  Google Scholar 

  112. Wu Y, Song J, Wang Y (2019) The potential role of ferroptosis in neonatal brain injury. Front Neurosci 13:115. https://doi.org/10.3389/fnins.2019.00115

    Article  PubMed  PubMed Central  Google Scholar 

  113. Schönfeld P, Reiser G (2013) Why does brain metabolism not favor burning of fatty acids to provide energy?—reflections on disadvantages of the use of free fatty acids as fuel for brain. J Cereb Blood Flow Metab 33:1493–1499. https://doi.org/10.1038/jcbfm.2013.128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Pollack M, Leeuwenburgh C (1999) Molecular mechanisms of oxidative stress in aging: free radicals, aging, antioxidants and disease. In: Handbook of oxidants and antioxidants in exercise. Elsevier Science B.V., Part X, Chapter 30, pp. 881–923

    Google Scholar 

  115. Rivas-Arancibia S, Guevara-Guzma’n R, Lo’pez-Vidal Y et al (2010) Oxidative stress caused by ozone exposure induces loss of brain repair in the hippocampus of adult rats. Toxicol Sci 113(1):187–197. https://doi.org/10.1093/toxsci/kfp252

    Article  CAS  PubMed  Google Scholar 

  116. Santiago-Lo’pez JA, Bautista-Martı’nez CI, Reyes-Hernandez M et al (2010) Oxidative stress, progressive damage in the substantia nigra and plasma dopamine oxidation, in rats chronically exposed to ozone. Toxicol Lett 197(3):193–200. https://doi.org/10.1016/j.toxlet.2010.05.020

    Article  CAS  Google Scholar 

  117. Pan XD, Zhu YG, Lin N et al (2011) Microglial phagocytosis induced by fibrillar b-amyloid is attenuated by oligomeric b-amyloid: implications for Alzheimer’s disease. Mol Neurodegener 6(45):1–17. https://doi.org/10.1186/1750-1326-6-45

    Article  CAS  Google Scholar 

  118. Cioffia F, Adam RHI, Broersen K (2019) Molecular mechanisms and genetics of oxidative stress in Alzheimer’s disease. J Alzheimers Dis 72:981–1017. https://doi.org/10.3233/JAD-190863

    Article  CAS  Google Scholar 

  119. Sevcsik E, Trexler AJ, Dunn JM et al (2011) Allostery in a disordered protein: oxidative modifications to a-synuclein act distally to regulate membrane binding. J Am Chem Soc 133(18):7152–7158. https://doi.org/10.1021/ja2009554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhao W, Varghese M, Yemul S et al (2011) Peroxisome proliferator activator receptor gamma coactivator- 1alpha (PGC-1a) improves motor performance and survival in a mouse model of amyotrophic lateral sclerosis. Mol Neurodegener 6(1):1–8. https://doi.org/10.1186/1750-1326-6-51

    Article  CAS  Google Scholar 

  121. Zuo L, Hemmelgarn BT, Chuang CC et al (2015) The role of oxidative stress-induced epigenetic alterations in amyloid-beta production in Alzheimer’s disease. Oxid Med Cell Longev 2015:604658, 13 pages. https://doi.org/10.1155/2015/604658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362:329–344. https://doi.org/10.1056/NEJMra0909142

    Article  CAS  PubMed  Google Scholar 

  123. Butterfield DA (2014) The 2013 SFRBM discovery award: selected discoveries from the butterfield laboratory of oxidative stress and its sequela in brain in cognitive disorders exemplified by Alzheimer disease and chemotherapy induced cognitive impairment. Free Rad Biol Med 74:157–174. https://doi.org/10.1016/j.freeradbiomed.2014.06.006

    Article  CAS  PubMed  Google Scholar 

  124. Townsend DM, Tew KD, Tapiero H (2003) The importance of glutathione in human disease. Biomed Pharmacother 57:145–155. https://doi.org/10.1016/s0753-3322(03)00043-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Chai YC, Ashraf SS, Rokutan K, Johnston RB Jr, Thomas JA (1994) S-thiolation of individual human neutrophil proteins including actin by stimulation of the respiratory burst: evidence against a role for glutathione disulfide. Arch Biochem Biophys 310:273–281. https://doi.org/10.1006/abbi.1994.1167

    Article  CAS  PubMed  Google Scholar 

  126. Zitka O, Skalickova S, Gumulec J et al (2012) Redox status expressed as GSH:GSSG ratio as a marker for oxidative stress in paediatric tumour patients. Oncol Lett 4:1247–1253. https://doi.org/10.3892/ol.2012.931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Huang WJ, Zhang X, Chen WW (2016) Role of oxidative stress in Alzheimer’s disease. Biomed Rep 4:519–522. https://doi.org/10.3892/br.2016.630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wang W, Zhao F, Ma X et al (2020) Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: recent advances. Mol Neurodegener 15:30. https://doi.org/10.1186/s13024-020-00376-6

    Article  PubMed  PubMed Central  Google Scholar 

  129. Nakamura T, Lipton SA (2011) Redox modulation by S-nitrosylation contributes to protein misfolding, mitochondrial dynamics, and neuronal synaptic damage in neurodegenerative diseases. Cell Death Differ 18:1478–1486. https://doi.org/10.1038/cdd.2011.65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Awasthi A, Matsunaga Y, Yamada T (2005) Amyloid-beta causes apoptosis of neuronal cells via caspase cascade, which can be prevented by amyloid-beta-derived short peptides. Exp Neurol 196:282–289. https://doi.org/10.1016/j.expneurol.2005.08.001

    Article  CAS  PubMed  Google Scholar 

  131. Nizzari M, Thellung S, Corsaro A et al (2012) Neurodegeneration in Alzheimer disease: role of amyloid precursor protein and presenilin 1 intracellular signaling. J Toxicol 2012:187297, 13 pages. https://doi.org/10.1155/2012/187297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Curtain CC, Ali F, Volitakis I et al (2001) Alzheimer’s disease amyloid-beta binds copper and zinc to generate an allosterically ordered membrane-penetrating structure containing superoxide dismutase-like subunits. J Biol Chem 276:20466–20473. https://doi.org/10.1074/jbc.M100175200

    Article  CAS  PubMed  Google Scholar 

  133. Poewe W, Seppi K, Tanner CM et al (2017) Parkinson disease. Nat Rev Dis Prim 3:17013. https://doi.org/10.1038/nrdp.2017.13

    Article  PubMed  Google Scholar 

  134. Brown GC, Borutaite V (2004) Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S nitrosothiols. Biochim Biophys Acta 1658(1–2):44–49. https://doi.org/10.1016/j.bbabio.2004.03.016

    Article  CAS  PubMed  Google Scholar 

  135. Seet RCS, Lee CYJ, Lim ECH et al (2010) Oxidative damage in Parkinson disease: measurement using accurate biomarkers. Free Radic Biol Med 48(4):560–566. https://doi.org/10.1016/j.freeradbiomed.2009.11.026

    Article  CAS  PubMed  Google Scholar 

  136. Bender A, Krishnan KJ, Morris CM et al (2006) High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 38(5):515–517. https://doi.org/10.1038/ng1769

    Article  CAS  PubMed  Google Scholar 

  137. Zuo L, Motherwell MS (2013) The impact of reactive oxygen species and genetic mitochondrial mutations in Parkinson’s disease. Gene 532:18–23. https://doi.org/10.1016/j.gene.2013.07.085

    Article  CAS  PubMed  Google Scholar 

  138. Perfeito R, Cunha-Oliveira T, Rego AC (2012) Revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease–resemblance to the effect of amphetamine drugs of abuse. Free Radic Biol Med 53:1791–1806. https://doi.org/10.1016/j.freeradbiomed.2012.08.569

    Article  CAS  PubMed  Google Scholar 

  139. Valente EM, Abou-Sleiman PM, Caputo V et al (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304:1158–1160. https://doi.org/10.1126/science.1096284

    Article  CAS  PubMed  Google Scholar 

  140. Jiang H, Ren Y, Zhao J, Feng J (2004) Parkin protects human dopaminergic neuroblastoma cells against dopamine induced apoptosis. Hum Mol Genet 13:1745–1754. https://doi.org/10.1093/hmg/ddh180

    Article  CAS  PubMed  Google Scholar 

  141. Shapira AH (2008) Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol 7:97–109. https://doi.org/10.1016/S1474-4422(07)70327-7

    Article  Google Scholar 

  142. Ganguly G, Chakrabarti S, Chatterjee U et al (2017) Proteinopathy, oxidative stress and mitochondrial dysfunction: cross talk in Alzheimer’s disease and Parkinson’s disease. Drug Des Devel Ther 11:797–810. https://doi.org/10.2147/DDDT.S130514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Mazo NA, Echeverria V, Cabezas R et al (2017) Medicinal plants as protective strategies against Parkinson’s disease. Curr Pharma Design 23(28):4180–4188. https://doi.org/10.2174/1381612823666170316142803

    Article  CAS  Google Scholar 

  144. Moreira PI, Zhu X, Wang X et al (2010) Mitochondria: a therapeutic target in neurodegeneration. Biochim Biophys Acta 1802:212–220. https://doi.org/10.1016/j.bbadis.2009.10.007

    Article  CAS  PubMed  Google Scholar 

  145. Yan MH, Wang X, Zhu X (2013) Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic Biol Med 62:90–101. https://doi.org/10.1016/j.freeradbiomed.2012.11.014

    Article  CAS  PubMed  Google Scholar 

  146. Vonsattel JP, DiFiglia M (1998) Huntington disease. J Neuropathol Exp Neurol 57:369–384. https://doi.org/10.1097/00005072-199805000-00001

    Article  CAS  PubMed  Google Scholar 

  147. Nekrasov ED, Vigont VA, Klyushnikov SA et al (2016) Manifestation of Huntington’s disease pathology in human induced pluripotent stem cell-derived neurons. Mol Neurodegener 11:27. https://doi.org/10.1186/s13024-016-0092-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Gonzalez-Alegre P, Afifi AK (2006) Clinical characteristics of childhood-onset (juvenile) Huntington disease: report of 12 patients and review of the literature. J Child Neurol 21:223–229. https://doi.org/10.2310/7010.2006.00055

    Article  PubMed  Google Scholar 

  149. Walke F (2007) Huntington’s disease. Lancet 369:218–228. https://doi.org/10.1016/S0140-6736(07)60111-1

    Article  CAS  Google Scholar 

  150. Ross CA, Tabrizi SJ (2011) Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 10(1):83–98. https://doi.org/10.1016/S1474-4422(10)70245-3

    Article  CAS  PubMed  Google Scholar 

  151. Gipson TA, Neueder A, Wexler NS et al (2013) Aberrantly spliced HTT, a new player in Huntington’s disease pathogenesis. RNA Biol 10(11):1647–1652. https://doi.org/10.4161/rna.26706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hatters DM (2012) Putting huntingtin “aggregation” in view with windows into the cellular milieu. Curr Top Med Chem 12(22):2611–2622

    Article  CAS  PubMed  Google Scholar 

  153. Kumar A, Vaish M, Ratan RR (2014) Transcriptional dys-regulation in Huntington’s disease: a failure of adaptive transcriptional homeostasis. Drug Discov Today 19(7):956–962. https://doi.org/10.1016/j.drudis.2014.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sepers MD, Raymond LA (2014) Mechanisms of synaptic dysfunction and excitotoxicity in Huntington’s disease. Drug Discov Today 19(7):990–996. https://doi.org/10.1016/j.drudis.2014.02.006

    Article  CAS  PubMed  Google Scholar 

  155. Molero AE, Arteaga-Bracho EE, Chen CH et al (2016) Selective expression of mutant huntingtin during development recapitulates characteristic features of Huntington’s disease. Proc Natl Acad Sci U S A 113(20):5736–5741. https://doi.org/10.1073/pnas.1603871113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Tunez I, Sanchez-Lopez F, Aguera E et al (2011) Important role of oxidative stress biomarkers in Huntington’s disease. J Med Chem 54:5602–5606. https://doi.org/10.1021/jm200605a

    Article  CAS  PubMed  Google Scholar 

  157. Stoy N, Mackay GM, Forrest CM et al (2005) Tryptophan metabolism and oxidative stress in patients with Huntington’s disease. J Neurochem 93(3):611–623. https://doi.org/10.1111/j.1471-4159.2005.03070.x

    Article  CAS  PubMed  Google Scholar 

  158. Christofides J, Bridel M, Egerton M et al (2006) Blood 5-hydroxytryptamine, 5-hydroxyindoleacetic acid and melatonin levels in patients with either Huntington’s disease or chronic brain injury. J Neurochem 97(4):1078–1088. https://doi.org/10.1111/j.1471-4159.2006.03807.x

    Article  CAS  PubMed  Google Scholar 

  159. Chang KH, Chen YC, Wu YR et al (2012) Downregulation of genes involved in metabolism and oxidative stress in the peripheral leukocytes of Hunt-ington’s disease patients. PLoS One 7(9):e46492. https://doi.org/10.1371/journal.pone.0046492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Pena-Sanchez M, Riveron-Forment G, Zaldivar-Vaillant T et al (2015) Association of status redox with demographic, clinical and imaging parameters in patients with Huntington’s disease. Clin Biochem 48(18):1258–1263. https://doi.org/10.3233/jhd-160205

    Article  PubMed  Google Scholar 

  161. Paul BD, Sbodio JI, Xu R et al (2014) Cystathionine gammalyase deficiency mediates neurodegeneration in Huntington’s disease. Nature 509(7498):96–100. https://doi.org/10.1038/nature13136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Starkov AA, Andreyev AY, Zhang SF et al (2014) Scavenging of H2O2 by mouse brain mitochondria. J Bioenerg Biomembr 46(6):471–477. https://doi.org/10.1007/s10863-014-9581-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Kumar A, Ratan RR (2016) Oxidative stress and Huntington’s disease: the good, the bad, and the ugly. J Huntingtons Dis 5(3):217–237. https://doi.org/10.3233/JHD-160205

    Article  PubMed  PubMed Central  Google Scholar 

  164. Kiernan MC, Vucic S, Cheah BC et al (2011) Amyotrophic lateral sclerosis. Lancet 377:942–955. https://doi.org/10.1016/S0140-6736(10)61156-7

    Article  CAS  PubMed  Google Scholar 

  165. Taylor JP, Brown RH Jr, Cleveland DW (2016) Decoding ALS: from genes to mechanism. Nature 539:197–206. https://doi.org/10.1038/nature20413

    Article  PubMed  PubMed Central  Google Scholar 

  166. Deng HX, Hentati A, Tainer JA et al (1993) Amyotrophic lateral sclerosis and structural defects in Cu, Zn superoxide dismutase. Science 261(5124):1047–1051. https://doi.org/10.1126/science.8351519

    Article  CAS  PubMed  Google Scholar 

  167. Kaur SJ, McKeown SR, Rashid S (2016) Mutant SOD1 mediated pathogenesis of amyotrophic lateral sclerosis. Gene 577(2):109–118. https://doi.org/10.1016/j.gene.2015.11.049

    Article  CAS  PubMed  Google Scholar 

  168. Rosen DR, Siddique T, Patterson D et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362(6415):59–62. https://doi.org/10.1016/j.gene.2015.11.049

    Article  CAS  PubMed  Google Scholar 

  169. Synofzik M, Ronchi D, Keskin I et al (2012) Mutant superoxide dismutase-1 indistinguishable from wild-type causes ALS. Hum Mol Genet 21(16):3568–3574. https://doi.org/10.1093/hmg/dds188

    Article  CAS  PubMed  Google Scholar 

  170. Sreedharan J, Blair IP, Tripathi VB et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319(5870):1668–1672. https://doi.org/10.1126/science

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Kwiatkowski TJ, Bosco DA, LeClerc AL et al (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323(5918):1205–1208. https://doi.org/10.1126/science.1166066

    Article  CAS  PubMed  Google Scholar 

  172. Mendez EF, Sattler R (2015) BiomarkerdevelopmentforC9orf72 repeat expansion in ALS. Brain Res 1607:26–35. https://doi.org/10.1016/j.brainres.2014.09.041

    Article  CAS  PubMed  Google Scholar 

  173. Oskarsson B, Gendron TF, Saff NP (2018) Amyotrophic lateral sclerosis: an update for 2018. Mayo Clin Proc 93(11):1617–1628. https://doi.org/10.1016/j.mayocp.2018.04.007

    Article  PubMed  Google Scholar 

  174. Pizzino G, Irrera N, Cucinotta M et al (2017) Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev 2017:8416763, 13 pages. https://doi.org/10.1155/2017/8416763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Gamez J, Corbera-Bellalta M, Nogales G et al (2006) Mutational analysis of the cu/Zn superoxide dismutase gene in a Catalan ALS population: should all sporadic ALS cases also be screened for SOD1? J Neurol Sci 247:21–28. https://doi.org/10.1016/j.jns.2006.03.006

    Article  CAS  PubMed  Google Scholar 

  176. Saccon RA, Bunton-Stasyshyn RK, Fisher EM et al (2013) Is SOD1 loss of function involved in amyotrophic lateral sclerosis? Brain 136:2342–2358. https://doi.org/10.1093/brain/awt097

    Article  PubMed  PubMed Central  Google Scholar 

  177. Bastow EL, Peswani AR, Tarrant DSJ et al (2016) New links between SOD1 and metabolic dysfunction from a yeast model of amyotrophic lateral sclerosis. J Cell Sci 129:4118–4129. https://doi.org/10.1242/jcs.190298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Damiano S, Petrozziello T, Ucci V et al (2013) Cu-Zn superoxide dismutase activates muscarinic acetylcholine M1 receptor pathway in neuroblastoma cells. Mol Cell Neurosci 52:31–37. https://doi.org/10.1016/j.mcn.2012.11.001

    Article  CAS  PubMed  Google Scholar 

  179. Yoshino H, Kimura A (2006) Investigation of the therapeutic effects of edaravone, a free radical scavenger, on amyotrophic lateral sclerosis (phase II study). Amyotrop Later Scler 7:241–245. https://doi.org/10.1080/17482960600881870

    Article  CAS  Google Scholar 

  180. Louwerse ES, Weverling GJ, Bossuyt PMM et al (1995) Randomized, double-blind, controlled trial of acetylcysteine in amyotrophic lateral sclerosis. Arch Neurol 52:559–564. https://doi.org/10.1001/archneur.1995.00540300031009

    Article  CAS  PubMed  Google Scholar 

  181. Guo C, Sun L, Chen X et al (2013) Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res 8:2003–2014. https://doi.org/10.3969/j.issn.1673-5374.2013.21.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Wang H, Guo W, Mitra J et al (2018) Mutant FUS causes DNA ligation defects to inhibit oxidative damage repair in Amyotrophic Lateral Sclerosis. Nat Commun 9:3683. https://doi.org/10.1038/s41467-018-06111-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Kovacic P, Weston W (2018) Unifying mechanism for multiple sclerosis and amyotrophic lateral sclerosis: reactive oxygen species, oxidative stress, and antioxidants. J Biopharm Ther Chal 2:1–8

    Google Scholar 

  184. Wojsiat J, Zoltowska KM, Laskowska-Kaszub K et al (2018) Oxidant/antioxidant imbalance in alzheimer’s disease: therapeutic and diagnostic prospects. Oxid Med Cell Longev 2018:6435861, 16 pages. https://doi.org/10.1155/2018/6435861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Tönnies E, Trushina E (2017) Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J Alzheimer’s Dis 57:1105–1121. https://doi.org/10.3233/JAD-161088

    Article  CAS  Google Scholar 

  186. Puspita L, Chung SY, Shim J-W (2017) Oxidative stress and cellular pathologies in Parkinson’s disease. Mol Brain 10(53):1–12. https://doi.org/10.1186/s13041-017-0340-9

    Article  CAS  Google Scholar 

  187. Lee J, Giordano S, Zhang J (2012) Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J 441:523–540. https://doi.org/10.1042/BJ20111451

    Article  CAS  PubMed  Google Scholar 

  188. Zhang X, Yu L, Xu H (2016) Lysosome calcium in ROS regulation of autophagy. Autophagy 12:1954–1955. https://doi.org/10.1080/15548627.2016.1212787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Hrelia P, Sita G, Ziche M et al (2020) Common protective strategies in neurodegenerative disease: focusing on risk factors to target the cellular redox system. Oxid Med Cell Logev 2020:8363245, 1–18. https://doi.org/10.1155/2020/8363245

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Singh, A., Kukreti, R., Kukreti, S. (2022). Oxidative Stress and Cellular Dysfunction in Neurodegenerative Disease . In: Peplow, P.V., Martinez, B., Gennarelli, T.A. (eds) Neurodegenerative Diseases Biomarkers. Neuromethods, vol 173. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1712-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1712-0_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1711-3

  • Online ISBN: 978-1-0716-1712-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics