Skip to main content

Imaging Biomarkers in Huntington’s Disease

  • Protocol
  • First Online:
Neurodegenerative Diseases Biomarkers

Part of the book series: Neuromethods ((NM,volume 173))

  • 1629 Accesses

Abstract

Huntington’s disease (HD) is a fatal neurodegenerative disorder caused by an abnormal CAG repeat expansion in the HTT gene, that produces a mutant protein thought to directly cause brain cell damage. Premanifest carriers of the CAG expansion represent an ideal population to track the pathophysiological events responsible for the onset of clinical symptoms. Neuroimaging tools, such as positron emission tomography (PET) and magnetic resonance imaging (MRI), are able to investigate in vivo structural, microstructural, and functional brain alterations up to a molecular level and have substantially contributed to understanding the pathophysiology of HD. Neuroimaging techniques have identified potential biomarkers of early detection and progression of disease which can be translated into clinical trials with acceptable sample sizes. This chapter outlines the most important findings from PET and MRI research that has helped understand the pathophysiology of HD in the premanifest and manifest stages, and the translational potential of the neuroimaging biomarkers for the design of future clinical trials with disease-modifying agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ross CA, Tabrizi SJ (2011) Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 10:83–98

    Article  CAS  PubMed  Google Scholar 

  2. Chao TK, Hu J, Pringsheim T (2017) Risk factors for the onset and progression of Huntington disease. Neurotoxicology 61:79–99. https://doi.org/10.1016/j.neuro.2017.01.005

    Article  CAS  PubMed  Google Scholar 

  3. Halliday GM, McRitchie DA, Macdonald V et al (1998) Regional specificity of brain atrophy in Huntington’s disease. Exp Neurol 154:663–672. https://doi.org/10.1006/exnr.1998.6919

    Article  CAS  PubMed  Google Scholar 

  4. Andrew SE, Goldberg YP, Kremer B et al (1993) The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet 4:398–403. https://doi.org/10.1038/ng0893-398

    Article  CAS  PubMed  Google Scholar 

  5. Keum JW, Shin A, Gillis T et al (2016) The HTT CAG-expansion mutation determines age at death but not disease duration in Huntington disease. Am J Hum Genet 98:287–298. https://doi.org/10.1016/j.ajhg.2015.12.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Langbehn DR, Hayden MR, Paulsen JS et al (2010) CAG-repeat length and the age of onset in Huntington Disease (HD): a review and validation study of statistical approaches. Am J Med Genet B Neuropsychiatr Genet 153:397–408

    Article  Google Scholar 

  7. Wilson H, Dervenoulas G, Politis M (2018) Structural magnetic resonance imaging in Huntington’s disease. In: International review of neurobiology. Academic Press Inc., New York, NY, pp 335–380

    Google Scholar 

  8. Wilson H, Politis M (2018) Molecular imaging in Huntington’s disease. In: International review of neurobiology. Academic Press Inc., New York, NY, pp 289–333

    Google Scholar 

  9. Wilson H, De Micco R, Niccolini F, Politis M (2017) Molecular imaging markers to track Huntington’s disease pathology. Front Neurol 8:11

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rocchi L, Niccolini F, Politis M (2015) Recent imaging advances in neurology. J Neurol 262:2182–2194. https://doi.org/10.1007/s00415-015-7711-x

    Article  CAS  PubMed  Google Scholar 

  11. Strafella AP, Bohnen NI, Pavese N et al (2018) Imaging markers of progression in Parkinson’s disease. Mov Disord Clin Pract 5:586–596

    Article  PubMed  PubMed Central  Google Scholar 

  12. Politis M, Pagano G, Niccolini F (2017) Imaging in Parkinson’s disease. Int Rev Neurobiol 132:233–274. https://doi.org/10.1016/bs.irn.2017.02.015

    Article  CAS  PubMed  Google Scholar 

  13. Wilson H, Pagano G, Politis M (2019) Dementia spectrum disorders: lessons learnt from decades with PET research. J Neural Transm 126:233–251

    Article  PubMed  Google Scholar 

  14. Kuhl DE, Phelps ME, Markham CH et al (1982) Cerebral metabolism and atrophy in Huntington’s disease determined by18FDG and computed tomographic scan. Ann Neurol 12:425–434. https://doi.org/10.1002/ana.410120504

    Article  CAS  PubMed  Google Scholar 

  15. Young AB, Penney JB, Starosta-Rubinstein S et al (1986) PET scan investigations of Huntington’s disease: cerebral metabolic correlates of neurological features and functional decline. Ann Neurol 20:296–303. https://doi.org/10.1002/ana.410200305

    Article  CAS  PubMed  Google Scholar 

  16. Berent S, Giordani B, Lehtinen S et al (1988) Positron emission tomographic scan investigations of Huntington’s disease: cerebral metabolic correlates of cognitive function. Ann Neurol 23:541–546. https://doi.org/10.1002/ana.410230603

    Article  CAS  PubMed  Google Scholar 

  17. Hayden MR, Hewitt J, Stoessl AJ et al (1987) The combined use of positron emission tomography and DNA polymorphisms for preclinical detection of Huntington’s disease. Neurology 37:1441–1447. https://doi.org/10.1212/wnl.37.9.1441

    Article  CAS  PubMed  Google Scholar 

  18. Mazziotta JC, Phelps ME, Pahl JJ et al (1987) Reduced cerebral glucose metabolism in asymptomatic subjects at risk for Huntington’s disease. N Engl J Med 316:357–362. https://doi.org/10.1056/NEJM198702123160701

    Article  CAS  PubMed  Google Scholar 

  19. Kuwert T, Lange HW, Langen KJ et al (1990) Cortical and subcortical glucose consumption measured by PET in patients with Huntington’s disease. Brain 113(Pt 5):1405–1423. https://doi.org/10.1093/brain/113.5.1405

    Article  PubMed  Google Scholar 

  20. Garnett ES, Firnau G, Nahmias C et al (1984) Reduced striatal glucose consumption and prolonged reaction time are early features in Huntington’s disease. J Neurol Sci 65:231–237. https://doi.org/10.1016/0022-510x(84)90087-x

    Article  CAS  PubMed  Google Scholar 

  21. Leenders KL, Frackowiak RSJ, Quinn N, Marsden CD (1986) Brain energy metabolism and dopaminergic function in Huntington’s disease measured in vivo using positron emission tomography. Mov Disord 1:69–77. https://doi.org/10.1002/mds.870010110

    Article  CAS  PubMed  Google Scholar 

  22. Ciarmiello A, Cannella M, Lastoria S et al (2006) Brain white-matter volume loss and glucose hypometabolism precede the clinical symptoms of Huntington’s disease. J Nucl Med 47:215–222

    CAS  PubMed  Google Scholar 

  23. López-Mora DA, Camacho V, Pérez-Pérez J et al (2016) Striatal hypometabolism in premanifest and manifest Huntington’s disease patients. Eur J Nucl Med Mol Imaging 43:2183–2189. https://doi.org/10.1007/s00259-016-3445-y

    Article  CAS  PubMed  Google Scholar 

  24. Herben-Dekker M, Van Oostrom JCH, Roos RAC et al (2014) Striatal metabolism and psychomotor speed as predictors of motor onset in Huntington’s disease. J Neurol 261:1387–1397. https://doi.org/10.1007/s00415-014-7350-7

    Article  CAS  PubMed  Google Scholar 

  25. Ciarmiello A, Giovacchini G, Orobello S et al (2012) 18F-FDG PET uptake in the pre-Huntington disease caudate affects the time-to-onset independently of CAG expansion size. Eur J Nucl Med Mol Imaging 39:1030–1036. https://doi.org/10.1007/s00259-012-2114-z

    Article  CAS  PubMed  Google Scholar 

  26. Gaura V, Lavisse S, Payoux P et al (2017) Association between motor symptoms and brain metabolism in early Huntington disease. JAMA Neurol 74:1088–1096. https://doi.org/10.1001/jamaneurol.2017.1200

    Article  PubMed  PubMed Central  Google Scholar 

  27. Martínez-Horta S, Perez-Perez J, Sampedro F et al (2018) Structural and metabolic brain correlates of apathy in Huntington’s disease. Mov Disord 33:1151–1159. https://doi.org/10.1002/mds.27395

    Article  PubMed  Google Scholar 

  28. Feigin A, Leenders KL, Moeller JR et al (2001) Metabolic network abnormalities in early Huntington’s disease: an [18F]FDG PET study. J Nucl Med 42:1591–1595

    CAS  PubMed  Google Scholar 

  29. Feigin A, Tang C, Ma Y et al (2007) Thalamic metabolism and symptom onset in preclinical Huntington’s disease. Brain 130:2858–2867. https://doi.org/10.1093/brain/awm217

    Article  CAS  PubMed  Google Scholar 

  30. Tang CC, Feigin A, Ma Y et al (2013) Metabolic network as a progression biomarker of premanifest Huntington’s disease. J Clin Invest 123:4076–4088. https://doi.org/10.1172/JCI69411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. van Oostrom JCH, Maguire RP, Verschuuren-Bemelmans CC et al (2005) Striatal dopamine D2 receptors, metabolism, and volume in preclinical Huntington disease. Neurology 65:941–943. https://doi.org/10.1212/01.wnl.0000176071.08694.cc

    Article  CAS  PubMed  Google Scholar 

  32. Antonini A, Leenders KL, Spiegel R et al (1996) Striatal glucose metabolism and dopamine D2 receptor binding in asymptomatic gene carriers and patients with Huntington’s disease. Brain 119(Pt 6):2085–2095. https://doi.org/10.1093/brain/119.6.2085

    Article  PubMed  Google Scholar 

  33. Bartenstein P, Weindl A, Spiegel S et al (1997) Central motor processing in Huntington’s disease. A PET study. Brain 120:1553–1567. https://doi.org/10.1093/brain/120.9.1553

    Article  PubMed  Google Scholar 

  34. Weeks RA, Ceballos-Baumann A, Piccini P et al (1997) Cortical control of movement in Huntington’s disease. A PET activation study. Brain 120(Pt 9):1569–1578. https://doi.org/10.1093/brain/120.9.1569

    Article  PubMed  Google Scholar 

  35. Lepron E, Péran P, Cardebat D, Démonet J-F (2009) A PET study of word generation in Huntington’s disease: effects of lexical competition and verb/noun category. Brain Lang 110:49–60. https://doi.org/10.1016/j.bandl.2009.05.004

    Article  PubMed  Google Scholar 

  36. Sedvall G, Karlsson P, Lundin A et al (1994) Dopamine D1 receptor number--a sensitive PET marker for early brain degeneration in Huntington’s disease. Eur Arch Psychiatry Clin Neurosci 243:249–255. https://doi.org/10.1007/BF02191583

    Article  CAS  PubMed  Google Scholar 

  37. Turjanski N, Weeks R, Dolan R et al (1995) Striatal D1 and D2 receptor binding in patients with Huntington’s disease and other choreas. A PET study. Brain 118(Pt 3):689–696. https://doi.org/10.1093/brain/118.3.689

    Article  PubMed  Google Scholar 

  38. Ginovart N, Lundin A, Farde L et al (1997) PET study of the pre- and post-synaptic dopaminergic markers for the neurodegenerative process in Huntington’s disease. Brain 120(Pt 3):503–514. https://doi.org/10.1093/brain/120.3.503

    Article  PubMed  Google Scholar 

  39. Bäckman L, Robins-Wahlin TB, Lundin A et al (1997) Cognitive deficits in Huntington’s disease are predicted by dopaminergic PET markers and brain volumes. Brain 120(Pt 1):2207–2217. https://doi.org/10.1093/brain/120.12.2207

    Article  PubMed  Google Scholar 

  40. Lawrence AD, Weeks RA, Brooks DJ et al (1998) The relationship between striatal dopamine receptor binding and cognitive performance in Huntington’s disease. Brain 121(Pt 7):1343–1355. https://doi.org/10.1093/brain/121.7.1343

    Article  PubMed  Google Scholar 

  41. Weeks RA, Piccini P, Harding AE, Brooks DJ (1996) Striatal D1 and D2 dopamine receptor loss in asymptomatic mutation carriers of Huntington’s disease. Ann Neurol 40:49–54. https://doi.org/10.1002/ana.410400110

    Article  CAS  PubMed  Google Scholar 

  42. Politis M, Pavese N, Tai YF et al (2008) Hypothalamic involvement in Huntington’s disease: an in vivo PET study. Brain 131:2860–2869. https://doi.org/10.1093/brain/awn244

    Article  PubMed  Google Scholar 

  43. Pavese N, Politis M, Tai YF et al (2010) Cortical dopamine dysfunction in symptomatic and premanifest Huntington’s disease gene carriers. Neurobiol Dis 37:356–361. https://doi.org/10.1016/j.nbd.2009.10.015

    Article  CAS  PubMed  Google Scholar 

  44. Antonini A, Leenders KL, Eidelberg D (1998) [11C]raclopride-PET studies of the Huntington’s disease rate of progression: relevance of the trinucleotide repeat length. Ann Neurol 43:253–255. https://doi.org/10.1002/ana.410430216

    Article  CAS  PubMed  Google Scholar 

  45. Andrews TC, Weeks RA, Turjanski N et al (1999) Huntington’s disease progression. PET and clinical observations. Brain 122(Pt 1):2353–2363. https://doi.org/10.1093/brain/122.12.2353

    Article  PubMed  Google Scholar 

  46. van Oostrom JCH, Dekker M, Willemsen ATM et al (2009) Changes in striatal dopamine D2 receptor binding in pre-clinical Huntington’s disease. Eur J Neurol 16:226–231. https://doi.org/10.1111/j.1468-1331.2008.02390.x

    Article  PubMed  Google Scholar 

  47. Esmaeilzadeh M, Farde L, Karlsson P et al (2011) Extrastriatal dopamine D(2) receptor binding in Huntington’s disease. Hum Brain Mapp 32:1626–1636. https://doi.org/10.1002/hbm.21134

    Article  PubMed  Google Scholar 

  48. Bohnen NI, Koeppe RA, Meyer P et al (2000) Decreased striatal monoaminergic terminals in Huntington disease. Neurology 54:1753–1759. https://doi.org/10.1212/wnl.54.9.1753

    Article  CAS  PubMed  Google Scholar 

  49. Pavese N, Gerhard A, Tai YF et al (2006) Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology 66:1638–1643. https://doi.org/10.1212/01.wnl.0000222734.56412.17

    Article  CAS  PubMed  Google Scholar 

  50. Tai YF, Pavese N, Gerhard A et al (2007) Imaging microglial activation in Huntington’s disease. Brain Res Bull 72:148–151. https://doi.org/10.1016/j.brainresbull.2006.10.029

    Article  CAS  PubMed  Google Scholar 

  51. Politis M, Pavese N, Tai YF et al (2011) Microglial activation in regions related to cognitive function predicts disease onset in Huntington’s disease: a multimodal imaging study. Hum Brain Mapp 32:258–270. https://doi.org/10.1002/hbm.21008

    Article  PubMed  Google Scholar 

  52. Politis M, Lahiri N, Niccolini F et al (2015) Increased central microglial activation associated with peripheral cytokine levels in premanifest Huntington’s disease gene carriers. Neurobiol Dis 83:115–121. https://doi.org/10.1016/j.nbd.2015.08.011

    Article  CAS  PubMed  Google Scholar 

  53. Lois C, González I, Izquierdo-García D et al (2018) Neuroinflammation in Huntington’s disease: new insights with 11C-PBR28 PET/MRI. ACS Chem Neurosci 9:2563–2571. https://doi.org/10.1021/acschemneuro.8b00072

    Article  CAS  PubMed  Google Scholar 

  54. Ahmad R, Bourgeois S, Postnov A et al (2014) PET imaging shows loss of striatal PDE10A in patients with Huntington disease. Neurology 82:279–281. https://doi.org/10.1212/WNL.0000000000000037

    Article  PubMed  Google Scholar 

  55. Russell DS, Barret O, Jennings DL et al (2014) The phosphodiesterase 10 positron emission tomography tracer, [18F]MNI-659, as a novel biomarker for early Huntington disease. JAMA Neurol 71:1520–1528. https://doi.org/10.1001/jamaneurol.2014.1954

    Article  PubMed  Google Scholar 

  56. Fazio P, Fitzer-Attas CJ, Mrzljak L et al (2020) PET molecular imaging of phosphodiesterase 10A: an early biomarker of Huntington’s disease progression. Mov Disord 35:606. https://doi.org/10.1002/mds.27963

    Article  CAS  PubMed  Google Scholar 

  57. Russell DS, Jennings DL, Barret O et al (2016) Change in PDE10 across early Huntington disease assessed by [18F]MNI-659 and PET imaging. Neurology 86:748–754. https://doi.org/10.1212/WNL.0000000000002391

    Article  CAS  PubMed  Google Scholar 

  58. Niccolini F, Haider S, Reis Marques T et al (2015) Altered PDE10A expression detectable early before symptomatic onset in Huntington’s disease. Brain 138:3016–3029. https://doi.org/10.1093/brain/awv214

    Article  PubMed  Google Scholar 

  59. Wilson H, Niccolini F, Haider S et al (2016) Loss of extra-striatal phosphodiesterase 10A expression in early premanifest Huntington’s disease gene carriers. J Neurol Sci 368:243–248. https://doi.org/10.1016/j.jns.2016.07.033

    Article  CAS  PubMed  Google Scholar 

  60. Holthoff VA, Koeppe RA, Frey KA et al (1993) Positron emission tomography measures of benzodiazepine receptors in Huntington’s disease. Ann Neurol 34:76–81. https://doi.org/10.1002/ana.410340114

    Article  CAS  PubMed  Google Scholar 

  61. Künig G, Leenders KL, Sanchez-Pernaute R et al (2000) Benzodiazepine receptor binding in Huntington’s disease: [11C]flumazenil uptake measured using positron emission tomography. Ann Neurol 47:644–648

    Article  PubMed  Google Scholar 

  62. Weeks RA, Cunningham VJ, Piccini P et al (1997) 11C-diprenorphine binding in Huntington’s disease: a comparison of region of interest analysis with statistical parametric mapping. J Cereb blood flow Metab 17:943–949. https://doi.org/10.1097/00004647-199709000-00003

    Article  CAS  PubMed  Google Scholar 

  63. Van Laere K, Casteels C, Dhollander I et al (2010) Widespread decrease of type 1 cannabinoid receptor availability in Huntington disease in vivo. J Nucl Med 51:1413–1417. https://doi.org/10.2967/jnumed.110.077156

    Article  CAS  PubMed  Google Scholar 

  64. Ceccarini J, Ahmad R, Van De Vliet L et al (2019) Behavioral symptoms in premanifest Huntington disease correlate with reduced frontal CB 1 R levels. J Nucl Med 60:115–121. https://doi.org/10.2967/jnumed.118.210393

    Article  CAS  PubMed  Google Scholar 

  65. Matusch A, Saft C, Elmenhorst D et al (2014) Cross sectional PET study of cerebral adenosine A1 receptors in premanifest and manifest Huntington’s disease. Eur J Nucl Med Mol Imaging 41:1210–1220. https://doi.org/10.1007/s00259-014-2724-8

    Article  CAS  PubMed  Google Scholar 

  66. Langbehn DR, Brinkman RR, Falush D et al (2004) A new model for prediction of the age of onset and penetrance for Huntington’s disease based on CAG length. Clin Genet 65:267–277. https://doi.org/10.1111/j.1399-0004.2004.00241.x

    Article  CAS  PubMed  Google Scholar 

  67. Vonsattel JP, Myers RH, Stevens TJ et al (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577. https://doi.org/10.1097/00005072-198511000-00003

    Article  CAS  PubMed  Google Scholar 

  68. Phillips W, Shannon KM, Barker RA (2008) The current clinical management of Huntington’s disease. Mov Disord 23:1491–1504. https://doi.org/10.1002/mds.21971

    Article  PubMed  Google Scholar 

  69. Cross A, Rossor M (1983) Dopamine D-1 and D-2 receptors in Huntington’s disease. Eur J Pharmacol 88:223–229. https://doi.org/10.1016/0014-2999(83)90009-2

    Article  CAS  PubMed  Google Scholar 

  70. Joyce JN, Lexow N, Bird E, Winokur A (1988) Organization of dopamine D1 and D2 receptors in human striatum: receptor autoradiographic studies in Huntington’s disease and schizophrenia. Synapse 2:546–557. https://doi.org/10.1002/syn.890020511

    Article  CAS  PubMed  Google Scholar 

  71. Halldin C, Farde L, Högberg T et al (1995) Carbon-11-FLB 457: a radioligand for extrastriatal D2 dopamine receptors. J Nucl Med 36:1275–1281

    CAS  PubMed  Google Scholar 

  72. Chen MK, Guilarte TR (2008) Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair. Pharmacol Ther 118:1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Janssen B, Vugts DJ, Windhorst AD, Mach RH (2018) PET imaging of microglial activation-beyond targeting TSPO. Molecules 23:607. https://doi.org/10.3390/molecules23030607

    Article  CAS  PubMed Central  Google Scholar 

  74. Fujishige K, Kotera J, Omori K (1999) Striatum- and testis-specific phosphodiesterase PDE10A isolation and characterization of a rat PDE10A. Eur J Biochem 266:1118–1127. https://doi.org/10.1046/j.1432-1327.1999.00963.x

    Article  CAS  PubMed  Google Scholar 

  75. Coskran TM, Morton D, Menniti FS et al (2006) Immunohistochemical localization of phosphodiesterase 10A in multiple mammalian species. J Histochem Cytochem 54:1205–1213. https://doi.org/10.1369/jhc.6A6930.2006

    Article  CAS  PubMed  Google Scholar 

  76. Nishi A, Kuroiwa M, Miller DB et al (2008) Distinct roles of PDE4 and PDE10A in the regulation of cAMP/PKA signaling in the striatum. J Neurosci 28:10460–10471. https://doi.org/10.1523/JNEUROSCI.2518-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Roze E, Betuing S, Deyts C et al (2008) Mitogen- and stress-activated protein kinase-1 deficiency is involved in expanded-huntingtin-induced transcriptional dysregulation and striatal death. FASEB J 22:1083–1093. https://doi.org/10.1096/fj.07-9814

    Article  CAS  PubMed  Google Scholar 

  78. Girault J-A (2012) Integrating neurotransmission in striatal medium spiny neurons. Adv Exp Med Biol 970:407–429. https://doi.org/10.1007/978-3-7091-0932-8_18

    Article  CAS  PubMed  Google Scholar 

  79. Hsu YT, Chang YG, Chern Y (2018) Insights into GABA A ergic system alteration in Huntington’s disease. Open Biol 8:180165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Twelvetrees AE, Yuen EY, Arancibia-Carcamo IL et al (2010) Delivery of GABAARs to synapses is mediated by HAP1-KIF5 and disrupted by mutant huntingtin. Neuron 65:53–65. https://doi.org/10.1016/j.neuron.2009.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yuen EY, Wei J, Zhong P, Yan Z (2012) Disrupted GABAAR trafficking and synaptic inhibition in a mouse model of Huntington’s disease. Neurobiol Dis 46:497–502. https://doi.org/10.1016/j.nbd.2012.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Penney JBJ, Young AB (1982) Quantitative autoradiography of neurotransmitter receptors in Huntington disease. Neurology 32:1391–1395. https://doi.org/10.1212/wnl.32.12.1391

    Article  PubMed  Google Scholar 

  83. Walker FO, Young AB, Penney JB et al (1984) Benzodiazepine and GABA receptors in early Huntington’s disease. Neurology 34:1237–1240. https://doi.org/10.1212/wnl.34.9.1237

    Article  CAS  PubMed  Google Scholar 

  84. Cross AJ, Hille C, Slater P (1987) Subtraction autoradiography of opiate receptor subtypes in human brain. Brain Res 418:343–348. https://doi.org/10.1016/0006-8993(87)90101-6

    Article  CAS  PubMed  Google Scholar 

  85. Albin RL, Reiner A, Anderson KD et al (1992) Preferential loss of striato-external pallidal projection neurons in presymptomatic Huntington’s disease. Ann Neurol 31:425–430. https://doi.org/10.1002/ana.410310412

    Article  CAS  PubMed  Google Scholar 

  86. Denovan-Wright EM, Robertson HA (2000) Cannabinoid receptor messenger RNA levels decrease in a subset of neurons of the lateral striatum, cortex and hippocampus of transgenic Huntington’s disease mice. Neuroscience 98:705–713. https://doi.org/10.1016/s0306-4522(00)00157-3

    Article  CAS  PubMed  Google Scholar 

  87. Lastres-Becker I, Berrendero F, Lucas JJ et al (2002) Loss of mRNA levels, binding and activation of GTP-binding proteins for cannabinoid CB1 receptors in the basal ganglia of a transgenic model of Huntington’s disease. Brain Res 929:236–242. https://doi.org/10.1016/s0006-8993(01)03403-5

    Article  CAS  PubMed  Google Scholar 

  88. Dowie MJ, Bradshaw HB, Howard ML et al (2009) Altered CB1 receptor and endocannabinoid levels precede motor symptom onset in a transgenic mouse model of Huntington’s disease. Neuroscience 163:456–465. https://doi.org/10.1016/j.neuroscience.2009.06.014

    Article  CAS  PubMed  Google Scholar 

  89. Glass M, Faull RL, Dragunow M (1993) Loss of cannabinoid receptors in the substantia nigra in Huntington’s disease. Neuroscience 56:523–527. https://doi.org/10.1016/0306-4522(93)90352-g

    Article  CAS  PubMed  Google Scholar 

  90. Fredholm BB (2007) Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ 14:1315–1323. https://doi.org/10.1038/sj.cdd.4402132

    Article  CAS  PubMed  Google Scholar 

  91. Bauer A, Zilles K, Matusch A et al (2005) Regional and subtype selective changes of neurotransmitter receptor density in a rat transgenic for the Huntington’s disease mutation. J Neurochem 94:639–650. https://doi.org/10.1111/j.1471-4159.2005.03169.x

    Article  CAS  PubMed  Google Scholar 

  92. Bauer A, Holschbach MH, Cremer M et al (2003) Evaluation of 18F-CPFPX, a novel adenosine A1 receptor ligand: in vitro autoradiography and high-resolution small animal PET. J Nucl Med 44:1682–1689

    CAS  PubMed  Google Scholar 

  93. Ishiwata K, Noguchi J, Wakabayashi S et al (2000) 11C-labeled KF18446: a potential central nervous system adenosine A2a receptor ligand. J Nucl Med 41:345–354

    CAS  PubMed  Google Scholar 

  94. Squitieri F, Orobello S, Cannella M et al (2009) Riluzole protects Huntington disease patients from brain glucose hypometabolism and grey matter volume loss and increases production of neurotrophins. Eur J Nucl Med Mol Imaging 36:1113–1120. https://doi.org/10.1007/s00259-009-1103-3

    Article  CAS  PubMed  Google Scholar 

  95. Esmaeilzadeh M, Kullingsjö J, Ullman H et al (2011) Regional cerebral glucose metabolism after pridopidine (ACR16) treatment in patients with Huntington disease. Clin Neuropharmacol 34:95–100. https://doi.org/10.1097/WNF.0b013e31821c31d8

    Article  CAS  PubMed  Google Scholar 

  96. Hjermind LE, Law I, Jønch A et al (2011) Huntington’s disease: effect of memantine on FDG-PET brain metabolism? J Neuropsychiatr Clin Neurosci 23:206–210. https://doi.org/10.1176/jnp.23.2.jnp206

    Article  CAS  Google Scholar 

  97. Fazio P, Paucar M, Svenningsson P, Varrone A (2018) Novel imaging biomarkers for Huntington’s disease and other hereditary choreas. Curr Neurol Neurosci Rep 18:85. https://doi.org/10.1007/s11910-018-0890-y

    Article  PubMed  PubMed Central  Google Scholar 

  98. Ashburner J, Friston KJ (2000) Voxel-based morphometry--the methods. NeuroImage 11:805–821. https://doi.org/10.1006/nimg.2000.0582

    Article  CAS  PubMed  Google Scholar 

  99. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage 9:179–194. https://doi.org/10.1006/nimg.1998.0395

    Article  CAS  PubMed  Google Scholar 

  100. Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. NeuroImage 9:195–207. https://doi.org/10.1006/nimg.1998.0396

    Article  CAS  PubMed  Google Scholar 

  101. Dogan I, Eickhoff SB, Schulz JB et al (2013) Consistent neurodegeneration and its association with clinical progression in Huntington’s disease: a coordinate-based meta-analysis. Neurodegener Dis 12:23–35. https://doi.org/10.1159/000339528

    Article  CAS  PubMed  Google Scholar 

  102. Tabrizi SJ, Langbehn DR, Leavitt BR et al (2009) Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol 8:791–801. https://doi.org/10.1016/S1474-4422(09)70170-X

    Article  PubMed  PubMed Central  Google Scholar 

  103. Nopoulos PC, Aylward EH, Ross CA et al (2010) Cerebral cortex structure in prodromal Huntington disease. Neurobiol Dis 40:544–554. https://doi.org/10.1016/j.nbd.2010.07.014

    Article  PubMed  PubMed Central  Google Scholar 

  104. Wild EJ, Henley SMD, Hobbs NZ et al (2010) Rate and acceleration of whole-brain atrophy in premanifest and early Huntington’s disease. Mov Disord 25:888–895. https://doi.org/10.1002/mds.22969

    Article  PubMed  PubMed Central  Google Scholar 

  105. Hobbs NZ, Henley SMD, Ridgway GR et al (2010) The progression of regional atrophy in premanifest and early Huntington’s disease: a longitudinal voxel-based morphometry study. J Neurol Neurosurg Psychiatry 81:756–763. https://doi.org/10.1136/jnnp.2009.190702

    Article  PubMed  Google Scholar 

  106. Hobbs NZ, Henley SMD, Wild EJ et al (2009) Automated quantification of caudate atrophy by local registration of serial MRI: evaluation and application in Huntington’s disease. NeuroImage 47:1659–1665. https://doi.org/10.1016/j.neuroimage.2009.06.003

    Article  PubMed  Google Scholar 

  107. Thieben MJ, Duggins AJ, Good CD et al (2002) The distribution of structural neuropathology in pre-clinical Huntington’s disease. Brain 125:1815–1828. https://doi.org/10.1093/brain/awf179

    Article  CAS  PubMed  Google Scholar 

  108. Nopoulos PC, Aylward EH, Ross CA et al (2011) Smaller intracranial volume in prodromal Huntington’s disease: evidence for abnormal neurodevelopment. Brain 134:137–142. https://doi.org/10.1093/brain/awq280

    Article  PubMed  Google Scholar 

  109. Majid DSA, Stoffers D, Sheldon S et al (2011) Automated structural imaging analysis detects premanifest Huntington’s disease neurodegeneration within 1 year. Mov Disord 26:1481–1488. https://doi.org/10.1002/mds.23656

    Article  PubMed  PubMed Central  Google Scholar 

  110. Tabrizi SJ, Reilmann R, Roos RAC et al (2012) Potential endpoints for clinical trials in premanifest and early Huntington’s disease in the TRACK-HD study: analysis of 24 month observational data. Lancet Neurol 11:42–53. https://doi.org/10.1016/S1474-4422(11)70263-0

    Article  PubMed  Google Scholar 

  111. Tabrizi SJ, Scahill RI, Owen G et al (2013) Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington’s disease in the TRACK-HD study: analysis of 36-month observational data. Lancet Neurol 12:637–649. https://doi.org/10.1016/S1474-4422(13)70088-7

    Article  PubMed  Google Scholar 

  112. Henley SMD, Wild EJ, Hobbs NZ et al (2009) Whole-brain atrophy as a measure of progression in premanifest and early Huntington’s disease. Mov Disord 24:932–936. https://doi.org/10.1002/mds.22485

    Article  PubMed  Google Scholar 

  113. Aylward EH, Nopoulos PC, Ross CA et al (2011) Longitudinal change in regional brain volumes in prodromal Huntington disease. J Neurol Neurosurg Psychiatry 82:405–410. https://doi.org/10.1136/jnnp.2010.208264

    Article  PubMed  Google Scholar 

  114. Rosas HD, Liu AK, Hersch S et al (2002) Regional and progressive thinning of the cortical ribbon in Huntington’s disease. Neurology 58:695–701. https://doi.org/10.1212/wnl.58.5.695

    Article  CAS  PubMed  Google Scholar 

  115. Rosas HD, Hevelone ND, Zaleta AK et al (2005) Regional cortical thinning in preclinical Huntington disease and its relationship to cognition. Neurology 65:745–747. https://doi.org/10.1212/01.wnl.0000174432.87383.87

    Article  CAS  PubMed  Google Scholar 

  116. Rosas HD, Salat DH, Lee SY et al (2008) Cerebral cortex and the clinical expression of Huntington’s disease: complexity and heterogeneity. Brain 131:1057–1068. https://doi.org/10.1093/brain/awn025

    Article  PubMed  Google Scholar 

  117. Sweidan W, Bao F, Bozorgzad N, George E (2020) White and gray matter abnormalities in manifest Huntington’s disease: cross-sectional and longitudinal analysis. J Neuroimaging 30:351. https://doi.org/10.1111/jon.12699

    Article  PubMed  PubMed Central  Google Scholar 

  118. Nopoulos P, Magnotta VA, Mikos A et al (2007) Morphology of the cerebral cortex in preclinical Huntington’s disease. Am J Psychiatry 164:1428–1434. https://doi.org/10.1176/appi.ajp.2007.06081266

    Article  PubMed  Google Scholar 

  119. Rosas HD, Reuter M, Doros G et al (2011) A tale of two factors: what determines the rate of progression in Huntington’s disease? A longitudinal MRI study. Mov Disord 26:1691–1697. https://doi.org/10.1002/mds.23762

    Article  PubMed  PubMed Central  Google Scholar 

  120. Paulsen JS, Nopoulos PC, Aylward E et al (2010) Striatal and white matter predictors of estimated diagnosis for Huntington disease. Brain Res Bull 82:201–207. https://doi.org/10.1016/j.brainresbull.2010.04.003

    Article  PubMed  PubMed Central  Google Scholar 

  121. Georgiou-Karistianis N, Scahill R, Tabrizi SJ et al (2013) Structural MRI in Huntington’s disease and recommendations for its potential use in clinical trials. Neurosci Biobehav Rev 37:480–490. https://doi.org/10.1016/j.neubiorev.2013.01.022

    Article  PubMed  Google Scholar 

  122. Harris GJ, Pearlson GD, Peyser CE et al (1992) Putamen volume reduction on magnetic resonance imaging exceeds caudate changes in mild Huntington’s disease. Ann Neurol 31:69–75. https://doi.org/10.1002/ana.410310113

    Article  CAS  PubMed  Google Scholar 

  123. Harris GJ, Aylward EH, Peyser CE et al (1996) Single photon emission computed tomographic blood flow and magnetic resonance volume imaging of basal ganglia in Huntington’s disease. Arch Neurol 53:316–324. https://doi.org/10.1001/archneur.1996.00550040044013

    Article  CAS  PubMed  Google Scholar 

  124. Aylward EH, Sparks BF, Field KM et al (2004) Onset and rate of striatal atrophy in preclinical Huntington disease. Neurology 63:66–72. https://doi.org/10.1212/01.wnl.0000132965.14653.d1

    Article  CAS  PubMed  Google Scholar 

  125. Ruocco HH, Lopes-Cendes I, Li LM et al (2006) Striatal and extrastriatal atrophy in Huntington’s disease and its relationship with length of the CAG repeat. Braz J Med Biol Res 39:1129–1136. https://doi.org/10.1590/s0100-879x2006000800016

    Article  CAS  PubMed  Google Scholar 

  126. Peinemann A, Schuller S, Pohl C et al (2005) Executive dysfunction in early stages of Huntington’s disease is associated with striatal and insular atrophy: a neuropsychological and voxel-based morphometric study. J Neurol Sci 239:11–19. https://doi.org/10.1016/j.jns.2005.07.007

    Article  PubMed  Google Scholar 

  127. Hobbs NZ, Farmer RE, Rees EM et al (2015) Short-interval observational data to inform clinical trial design in Huntington’s disease. J Neurol Neurosurg Psychiatry 86:1291–1298. https://doi.org/10.1136/jnnp-2014-309768

    Article  PubMed  Google Scholar 

  128. Aylward EH, Anderson NB, Bylsma FW et al (1998) Frontal lobe volume in patients with Huntington’s disease. Neurology 50:252–258. https://doi.org/10.1212/wnl.50.1.252

    Article  CAS  PubMed  Google Scholar 

  129. Aylward EH, Codori AM, Rosenblatt A et al (2000) Rate of caudate atrophy in presymptomatic and symptomatic stages of Huntington’s disease. Mov Disord 15:552–560. https://doi.org/10.1002/1531-8257(200005)15:3<552::AID-MDS1020>3.0.CO;2-P

    Article  CAS  PubMed  Google Scholar 

  130. Wijeratne PA, Johnson EB, Eshaghi A et al (2020) Robust Markers and sample sizes for multicenter trials of Huntington disease. Ann Neurol 87:751–762. https://doi.org/10.1002/ana.25709

    Article  PubMed  PubMed Central  Google Scholar 

  131. Aylward EH, Brandt J, Codori AM et al (1994) Reduced basal ganglia volume associated with the gene for Huntington’s disease in asymptomatic at-risk persons. Neurology 44:823–828. https://doi.org/10.1212/wnl.44.5.823

    Article  CAS  PubMed  Google Scholar 

  132. Douaud G, Gaura V, Ribeiro M-J et al (2006) Distribution of grey matter atrophy in Huntington’s disease patients: a combined ROI-based and voxel-based morphometric study. NeuroImage 32:1562–1575. https://doi.org/10.1016/j.neuroimage.2006.05.057

    Article  CAS  PubMed  Google Scholar 

  133. Rosas HD, Koroshetz WJ, Chen YI et al (2003) Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology 60:1615–1620. https://doi.org/10.1212/01.wnl.0000065888.88988.6e

    Article  CAS  PubMed  Google Scholar 

  134. Bogaard SJA, Dumas EM, Acharya TP et al (2011) Early atrophy of pallidum and accumbens nucleus in Huntington’s disease. J Neurol 258:412–420. https://doi.org/10.1007/s00415-010-5768-0

    Article  PubMed  Google Scholar 

  135. Roy AK, Shehzad Z, Margulies DS et al (2009) Functional connectivity of the human amygdala using resting state fMRI. NeuroImage 45:614–626. https://doi.org/10.1016/j.neuroimage.2008.11.030

    Article  PubMed  Google Scholar 

  136. Phelps EA, LeDoux JE (2005) Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48:175–187. https://doi.org/10.1016/j.neuron.2005.09.025

    Article  CAS  PubMed  Google Scholar 

  137. Kipps CM, Duggins AJ, McCusker EA, Calder AJ (2007) Disgust and happiness recognition correlate with anteroventral insula and amygdala volume respectively in preclinical Huntington’s disease. J Cogn Neurosci 19:1206–1217. https://doi.org/10.1162/jocn.2007.19.7.1206

    Article  CAS  PubMed  Google Scholar 

  138. Ahveninen LM, Stout JC, Georgiou-Karistianis N et al (2018) Reduced amygdala volumes are related to motor and cognitive signs in Huntington’s disease: the IMAGE-HD study. NeuroImage Clin 18:881–887. https://doi.org/10.1016/j.nicl.2018.03.027

    Article  PubMed  PubMed Central  Google Scholar 

  139. Phillips O, Sanchez-Castaneda C, Elifani F et al (2013) Tractography of the corpus callosum in Huntington’s disease. PLoS One 8:e73280. https://doi.org/10.1371/journal.pone.0073280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sánchez-Castañeda C, Cherubini A, Elifani F et al (2013) Seeking Huntington disease biomarkers by multimodal, cross-sectional basal ganglia imaging. Hum Brain Mapp 34:1625–1635. https://doi.org/10.1002/hbm.22019

    Article  PubMed  Google Scholar 

  141. Reading SAJ, Yassa MA, Bakker A et al (2005) Regional white matter change in pre-symptomatic Huntington’s disease: a diffusion tensor imaging study. Psychiatry Res 140:55–62. https://doi.org/10.1016/j.pscychresns.2005.05.011

    Article  PubMed  Google Scholar 

  142. Mascalchi M, Lolli F, Della Nave R et al (2004) Huntington disease: volumetric, diffusion-weighted, and magnetization transfer MR imaging of brain. Radiology 232:867–873. https://doi.org/10.1148/radiol.2322030820

    Article  PubMed  Google Scholar 

  143. Novak MJU, Seunarine KK, Gibbard CR et al (2014) White matter integrity in premanifest and early Huntington’s disease is related to caudate loss and disease progression. Cortex 52:98–112. https://doi.org/10.1016/j.cortex.2013.11.009

    Article  PubMed  Google Scholar 

  144. Dumas EM, van den Bogaard SJA, Ruber ME et al (2012) Early changes in white matter pathways of the sensorimotor cortex in premanifest Huntington’s disease. Hum Brain Mapp 33:203–212. https://doi.org/10.1002/hbm.21205

    Article  PubMed  Google Scholar 

  145. Syka M, Keller J, Klempíř J et al (2015) Correlation between relaxometry and diffusion tensor imaging in the globus pallidus of Huntington’s disease patients. PLoS One 10:e0118907. https://doi.org/10.1371/journal.pone.0118907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Poudel GR, Stout JC, Domínguez DJF et al (2015) Longitudinal change in white matter microstructure in Huntington’s disease: the IMAGE-HD study. Neurobiol Dis 74:406–412. https://doi.org/10.1016/j.nbd.2014.12.009

    Article  PubMed  Google Scholar 

  147. Matsui JT, Vaidya JG, Johnson HJ et al (2014) Diffusion weighted imaging of prefrontal cortex in prodromal Huntington’s disease. Hum Brain Mapp 35:1562–1573. https://doi.org/10.1002/hbm.22273

    Article  PubMed  Google Scholar 

  148. Orth M, Gregory S, Scahill RI et al (2016) Natural variation in sensory-motor white matter organization influences manifestations of Huntington’s disease. Hum Brain Mapp 37:4615–4628. https://doi.org/10.1002/hbm.23332

    Article  PubMed  PubMed Central  Google Scholar 

  149. Rosas HD, Wilkens P, Salat DH et al (2018) Complex spatial and temporally defined myelin and axonal degeneration in Huntington disease. NeuroImage Clin 20:236–242. https://doi.org/10.1016/j.nicl.2018.01.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Douaud G, Behrens TE, Poupon C et al (2009) In vivo evidence for the selective subcortical degeneration in Huntington’s disease. NeuroImage 46:958–966. https://doi.org/10.1016/j.neuroimage.2009.03.044

    Article  PubMed  Google Scholar 

  151. Bohanna I, Georgiou-Karistianis N, Egan GF (2011) Connectivity-based segmentation of the striatum in Huntington’s disease: vulnerability of motor pathways. Neurobiol Dis 42:475–481. https://doi.org/10.1016/j.nbd.2011.02.010

    Article  PubMed  Google Scholar 

  152. Gregory S, Cole JH, Farmer RE et al (2015) Longitudinal diffusion tensor imaging shows progressive changes in white matter in Huntington’s disease. J Huntingtons Dis 4:333–346. https://doi.org/10.3233/JHD-150173

    Article  PubMed  Google Scholar 

  153. Saba RA, Yared JH, Doring TM et al (2017) Diffusion tensor imaging of brain white matter in Huntington gene mutation individuals. Arq Neuropsiquiatr 75:503–508. https://doi.org/10.1590/0004-282X20170085

    Article  PubMed  Google Scholar 

  154. Phillips O, Squitieri F, Sanchez-Castaneda C et al (2015) The corticospinal tract in Huntington’s disease. Cereb Cortex 25:2670–2682. https://doi.org/10.1093/cercor/bhu065

    Article  CAS  PubMed  Google Scholar 

  155. Liu Z, Xu C, Xu Y et al (2010) Decreased regional homogeneity in insula and cerebellum: a resting-state fMRI study in patients with major depression and subjects at high risk for major depression. Psychiatry Res 182:211–215. https://doi.org/10.1016/j.pscychresns.2010.03.004

    Article  PubMed  Google Scholar 

  156. Sprengelmeyer R, Orth M, Müller H-P et al (2014) The neuroanatomy of subthreshold depressive symptoms in Huntington’s disease: a combined diffusion tensor imaging (DTI) and voxel-based morphometry (VBM) study. Psychol Med 44:1867–1878. https://doi.org/10.1017/S003329171300247X

    Article  CAS  PubMed  Google Scholar 

  157. Sritharan A, Egan GF, Johnston L et al (2010) A longitudinal diffusion tensor imaging study in symptomatic Huntington’s disease. J Neurol Neurosurg Psychiatry 81:257–262. https://doi.org/10.1136/jnnp.2007.142786

    Article  PubMed  Google Scholar 

  158. Odish OFF, Leemans A, Reijntjes RHAM et al (2015) Microstructural brain abnormalities in Huntington’s disease: a two-year follow-up. Hum Brain Mapp 36:2061–2074. https://doi.org/10.1002/hbm.22756

    Article  PubMed  PubMed Central  Google Scholar 

  159. Odish OFF, Reijntjes RHAM, van den Bogaard SJA et al (2018) Progressive microstructural changes of the occipital cortex in Huntington’s disease. Brain Imaging Behav 12:1786–1794. https://doi.org/10.1007/s11682-018-9849-5

    Article  PubMed  PubMed Central  Google Scholar 

  160. Pflanz CP, Charquero-Ballester M, Majid DSA et al (2020) One-year changes in brain microstructure differentiate preclinical Huntington’s disease stages. NeuroImage Clin 25:102099. https://doi.org/10.1016/j.nicl.2019.102099

    Article  PubMed  Google Scholar 

  161. Weaver KE, Richards TL, Liang O et al (2009) Longitudinal diffusion tensor imaging in Huntington’s Disease. Exp Neurol 216:525–529. https://doi.org/10.1016/j.expneurol.2008.12.026

    Article  PubMed  Google Scholar 

  162. Shaffer JJ, Ghayoor A, Long JD et al (2017) Longitudinal diffusion changes in prodromal and early HD: evidence of white-matter tract deterioration. Hum Brain Mapp 38:1460–1477. https://doi.org/10.1002/hbm.23465

    Article  PubMed  PubMed Central  Google Scholar 

  163. Harrington DL, Long JD, Durgerian S et al (2016) Cross-sectional and longitudinal multimodal structural imaging in prodromal Huntington’s disease. Mov Disord 31:1664–1675. https://doi.org/10.1002/mds.26803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Warach S, Gaa J, Siewert B et al (1995) Acute human stroke studied by whole brain echo planar diffusion-weighted magnetic resonance imaging. Ann Neurol 37:231–241. https://doi.org/10.1002/ana.410370214

    Article  CAS  PubMed  Google Scholar 

  165. Sone D (2019) Neurite orientation and dispersion density imaging: clinical utility, efficacy, and role in therapy. Rep Med Imaging 12:17–29. https://doi.org/10.2147/RMI.S194083

    Article  Google Scholar 

  166. Zhang J, Gregory S, Scahill RI et al (2018) In vivo characterization of white matter pathology in premanifest Huntington’s disease. Ann Neurol 84:497–504. https://doi.org/10.1002/ana.25309

    Article  PubMed  PubMed Central  Google Scholar 

  167. Vymazal J, Klempír J, Jech R et al (2007) MR relaxometry in Huntington’s disease: correlation between imaging, genetic and clinical parameters. J Neurol Sci 263:20–25. https://doi.org/10.1016/j.jns.2007.05.018

    Article  PubMed  Google Scholar 

  168. Apple AC, Possin KL, Satris G et al (2014) Quantitative 7T phase imaging in premanifest Huntington disease. AJNR Am J Neuroradiol 35:1707–1713. https://doi.org/10.3174/ajnr.A3932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Bartzokis G, Lu PH, Tishler TA et al (2007) Myelin breakdown and iron changes in Huntington’s disease: pathogenesis and treatment implications. Neurochem Res 32:1655–1664. https://doi.org/10.1007/s11064-007-9352-7

    Article  CAS  PubMed  Google Scholar 

  170. Jurgens CK, Jasinschi R, Ekin A et al (2010) MRI T2 Hypointensities in basal ganglia of premanifest Huntington’s disease. PLoS Curr 2:RRN1173. https://doi.org/10.1371/currents.RRN1173

    Article  PubMed  PubMed Central  Google Scholar 

  171. Rosas HD, Chen YI, Doros G et al (2012) Alterations in brain transition metals in Huntington disease: an evolving and intricate story. Arch Neurol 69:887–893. https://doi.org/10.1001/archneurol.2011.2945

    Article  PubMed  PubMed Central  Google Scholar 

  172. van Bergen JMG, Hua J, Unschuld PG et al (2016) Quantitative susceptibility mapping suggests altered brain iron in premanifest Huntington disease. AJNR Am J Neuroradiol 37:789–796. https://doi.org/10.3174/ajnr.A4617

    Article  PubMed  PubMed Central  Google Scholar 

  173. Di Paola M, Phillips OR, Sanchez-Castaneda C et al (2014) MRI measures of corpus callosum iron and myelin in early Huntington’s disease. Hum Brain Mapp 35:3143–3151. https://doi.org/10.1002/hbm.22391

    Article  PubMed  Google Scholar 

  174. Ordidge RJ, Gorell JM, Deniau JC et al (1994) Assessment of relative brain iron concentrations using T2-weighted and T2*-weighted MRI at 3 Tesla. Magn Reson Med 32:335–341. https://doi.org/10.1002/mrm.1910320309

    Article  CAS  PubMed  Google Scholar 

  175. Domínguez JFD, Ng ACL, Poudel G et al (2016) Iron accumulation in the basal ganglia in Huntington’s disease: cross-sectional data from the IMAGE-HD study. J Neurol Neurosurg Psychiatry 87:545–549. https://doi.org/10.1136/jnnp-2014-310183

    Article  PubMed  Google Scholar 

  176. Klöppel S, Gregory S, Scheller E et al (2015) Compensation in preclinical Huntington’s disease: evidence from the track-on HD study. EBioMedicine 2:1420–1429. https://doi.org/10.1016/j.ebiom.2015.08.002

    Article  PubMed  PubMed Central  Google Scholar 

  177. Kirchner WK (1958) Age differences in short-term retention of rapidly changing information. J Exp Psychol 55:352–358. https://doi.org/10.1037/h0043688

    Article  CAS  PubMed  Google Scholar 

  178. Wolf RC, Vasic N, Schönfeldt-Lecuona C et al (2007) Dorsolateral prefrontal cortex dysfunction in presymptomatic Huntington’s disease: evidence from event-related fMRI. Brain 130:2845–2857. https://doi.org/10.1093/brain/awm210

    Article  PubMed  Google Scholar 

  179. Wolf RC, Sambataro F, Vasic N et al (2008) Aberrant connectivity of lateral prefrontal networks in presymptomatic Huntington’s disease. Exp Neurol 213:137–144. https://doi.org/10.1016/j.expneurol.2008.05.017

    Article  CAS  PubMed  Google Scholar 

  180. Georgiou-Karistianis N, Stout JC, Domínguez DJF et al (2014) Functional magnetic resonance imaging of working memory in Huntington’s disease: cross-sectional data from the IMAGE-HD study. Hum Brain Mapp 35:1847–1864. https://doi.org/10.1002/hbm.22296

    Article  PubMed  Google Scholar 

  181. Poudel GR, Stout JC, Domínguez DJF et al (2015) Functional changes during working memory in Huntington’s disease: 30-month longitudinal data from the IMAGE-HD study. Brain Struct Funct 220:501–512. https://doi.org/10.1007/s00429-013-0670-z

    Article  PubMed  Google Scholar 

  182. Wolf RC, Sambataro F, Vasic N et al (2008) Altered frontostriatal coupling in pre-manifest Huntington’s disease: effects of increasing cognitive load. Eur J Neurol 15:1180–1190. https://doi.org/10.1111/j.1468-1331.2008.02253.x

    Article  CAS  PubMed  Google Scholar 

  183. Poudel GR, Driscoll S, Domínguez DJF et al (2015) Functional brain correlates of neuropsychiatric symptoms in presymptomatic Huntington’s disease: the IMAGE-HD study. J Huntingtons Dis 4:325–332. https://doi.org/10.3233/JHD-150154

    Article  CAS  PubMed  Google Scholar 

  184. Wolf RC, Grön G, Sambataro F et al (2012) Brain activation and functional connectivity in premanifest Huntington’s disease during states of intrinsic and phasic alertness. Hum Brain Mapp 33:2161–2173. https://doi.org/10.1002/hbm.21348

    Article  PubMed  Google Scholar 

  185. Gray MA, Egan GF, Ando A et al (2013) Prefrontal activity in Huntington’s disease reflects cognitive and neuropsychiatric disturbances: the IMAGE-HD study. Exp Neurol 239:218–228. https://doi.org/10.1016/j.expneurol.2012.10.020

    Article  CAS  PubMed  Google Scholar 

  186. Reading SAJ, Dziorny AC, Peroutka LA et al (2004) Functional brain changes in presymptomatic Huntington’s disease. Ann Neurol 55:879–883. https://doi.org/10.1002/ana.20121

    Article  PubMed  Google Scholar 

  187. Zimbelman JL, Paulsen JS, Mikos A et al (2007) fMRI detection of early neural dysfunction in preclinical Huntington’s disease. J Int Neuropsychol Soc 13:758–769. https://doi.org/10.1017/S1355617707071214

    Article  PubMed  Google Scholar 

  188. Paulsen JS, Zimbelman JL, Hinton SC et al (2004) fMRI biomarker of early neuronal dysfunction in presymptomatic Huntington’s Disease. AJNR Am J Neuroradiol 25:1715–1721

    PubMed  PubMed Central  Google Scholar 

  189. Saft C, Schüttke A, Beste C et al (2008) fMRI reveals altered auditory processing in manifest and premanifest Huntington’s disease. Neuropsychologia 46:1279–1289. https://doi.org/10.1016/j.neuropsychologia.2007.12.002

    Article  PubMed  Google Scholar 

  190. Unschuld PG, Liu X, Shanahan M et al (2013) Prefrontal executive function associated coupling relates to Huntington’s disease stage. Cortex 49:2661–2673. https://doi.org/10.1016/j.cortex.2013.05.015

    Article  PubMed  Google Scholar 

  191. Hennenlotter A, Schroeder U, Erhard P et al (2004) Neural correlates associated with impaired disgust processing in pre-symptomatic Huntington’s disease. Brain 127:1446–1453. https://doi.org/10.1093/brain/awh165

    Article  CAS  PubMed  Google Scholar 

  192. Van den Stock J, De Winter F-L, Ahmad R et al (2015) Functional brain changes underlying irritability in premanifest Huntington’s disease. Hum Brain Mapp 36:2681–2690. https://doi.org/10.1002/hbm.22799

    Article  PubMed  PubMed Central  Google Scholar 

  193. Malejko K, Weydt P, Süßmuth SD et al (2014) Prodromal Huntington disease as a model for functional compensation of early neurodegeneration. PLoS One 9:e114569. https://doi.org/10.1371/journal.pone.0114569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Novak MJU, Warren JD, Henley SMD et al (2012) Altered brain mechanisms of emotion processing in pre-manifest Huntington’s disease. Brain 135:1165–1179. https://doi.org/10.1093/brain/aws024

    Article  PubMed  PubMed Central  Google Scholar 

  195. Quarantelli M, Salvatore E, Giorgio SMDA et al (2013) Default-mode network changes in Huntington’s disease: an integrated MRI study of functional connectivity and morphometry. PLoS One 8:e72159. https://doi.org/10.1371/journal.pone.0072159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Sánchez-Castañeda C, de Pasquale F, Caravasso CF et al (2017) Resting-state connectivity and modulated somatomotor and default-mode networks in Huntington disease. CNS Neurosci Ther 23:488–497. https://doi.org/10.1111/cns.12701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Müller H-P, Gorges M, Grön G et al (2016) Motor network structure and function are associated with motor performance in Huntington’s disease. J Neurol 263:539–549. https://doi.org/10.1007/s00415-015-8014-y

    Article  PubMed  Google Scholar 

  198. Wolf RC, Thomann PA, Sambataro F et al (2015) Abnormal cerebellar volume and corticocerebellar dysfunction in early manifest Huntington’s disease. J Neurol 262:859–869. https://doi.org/10.1007/s00415-015-7642-6

    Article  CAS  PubMed  Google Scholar 

  199. Gregory S, Scahill RI (2018) Functional magnetic resonance imaging in Huntington’s disease. In: International review of neurobiology. Academic Press Inc., New York, NY, pp 381–408

    Google Scholar 

  200. Dumas EM, van den Bogaard SJA, Hart EP et al (2013) Reduced functional brain connectivity prior to and after disease onset in Huntington’s disease. NeuroImage Clin 2:377–384. https://doi.org/10.1016/j.nicl.2013.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  201. Wolf RC, Sambataro F, Vasic N et al (2014) Abnormal resting-state connectivity of motor and cognitive networks in early manifest Huntington’s disease. Psychol Med 44:3341–3356. https://doi.org/10.1017/S0033291714000579

    Article  CAS  PubMed  Google Scholar 

  202. Espinoza FA, Turner JA, Vergara VM et al (2018) Whole-brain connectivity in a large study of Huntington’s disease gene mutation carriers and healthy controls. Brain Connect 8:166–178. https://doi.org/10.1089/brain.2017.0538

    Article  PubMed  PubMed Central  Google Scholar 

  203. Liu W, Yang J, Chen K et al (2016) Resting-state fMRI reveals potential neural correlates of impaired cognition in Huntington’s disease. Parkinsonism Relat Disord 27:41–46. https://doi.org/10.1016/j.parkreldis.2016.04.017

    Article  PubMed  Google Scholar 

  204. Poudel GR, Egan GF, Churchyard A et al (2014) Abnormal synchrony of resting state networks in premanifest and symptomatic Huntington disease: the IMAGE-HD study. J Psychiatry Neurosci 39:87–96. https://doi.org/10.1503/jpn.120226

    Article  PubMed  PubMed Central  Google Scholar 

  205. Wolf RC, Sambataro F, Vasic N et al (2014) Visual system integrity and cognition in early Huntington’s disease. Eur J Neurosci 40:2417–2426. https://doi.org/10.1111/ejn.12575

    Article  PubMed  Google Scholar 

  206. Werner CJ, Dogan I, Saß C et al (2014) Altered resting-state connectivity in Huntington’s disease. Hum Brain Mapp 35:2582–2593. https://doi.org/10.1002/hbm.22351

    Article  PubMed  Google Scholar 

  207. Odish OFF, van den Berg-Huysmans AA, van den Bogaard SJA et al (2015) Longitudinal resting state fMRI analysis in healthy controls and premanifest Huntington’s disease gene carriers: a three-year follow-up study. Hum Brain Mapp 36:110–119. https://doi.org/10.1002/hbm.22616

    Article  PubMed  Google Scholar 

  208. Harrington DL, Rubinov M, Durgerian S et al (2015) Network topology and functional connectivity disturbances precede the onset of Huntington’s disease. Brain 138:2332–2346. https://doi.org/10.1093/brain/awv145

    Article  PubMed  PubMed Central  Google Scholar 

  209. Gargouri F, Messé A, Perlbarg V et al (2016) Longitudinal changes in functional connectivity of cortico-basal ganglia networks in manifests and premanifest Huntington’s disease. Hum Brain Mapp 37:4112–4128. https://doi.org/10.1002/hbm.23299

    Article  PubMed  PubMed Central  Google Scholar 

  210. Jenkins BG, Rosas HD, Chen Y-CI et al (1998) 1H NMR spectroscopy studies of Huntington’s disease. Neurology 50:1357–1365. https://doi.org/10.1212/wnl.50.5.1357

    Article  CAS  PubMed  Google Scholar 

  211. Clarke CE, Lowry M, Quarrell OWJ (1998) No change in striatal glutamate in Huntington’s disease measured by proton magnetic resonance spectroscopy. Parkinsonism Relat Disord 4:123–127. https://doi.org/10.1016/s1353-8020(98)00026-1

    Article  CAS  PubMed  Google Scholar 

  212. Sánchez-Pernaute R, García-Segura JM, del Barrio AA et al (1999) Clinical correlation of striatal 1H MRS changes in Huntington’s disease. Neurology 53:806–812. https://doi.org/10.1212/wnl.53.4.806

    Article  PubMed  Google Scholar 

  213. Reynolds NC, Prost RW, Mark LP (2005) Heterogeneity in 1H-MRS profiles of presymptomatic and early manifest Huntington’s disease. Brain Res 1031:82–89. https://doi.org/10.1016/j.brainres.2004.10.030

    Article  CAS  PubMed  Google Scholar 

  214. Ruocco HH, Lopes-Cendes I, Li LM, Cendes F (2007) Evidence of thalamic dysfunction in Huntington disease by proton magnetic resonance spectroscopy. Mov Disord 22:2052–2056. https://doi.org/10.1002/mds.21601

    Article  PubMed  Google Scholar 

  215. Sturrock A, Laule C, Decolongon J et al (2010) Magnetic resonance spectroscopy biomarkers in premanifest and early Huntington disease. Neurology 75:1702–1710. https://doi.org/10.1212/wnl.0b013e3181fc27e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. van den Bogaard SJA, Dumas EM, Teeuwisse WM et al (2011) Exploratory 7-Tesla magnetic resonance spectroscopy in Huntington’s disease provides in vivo evidence for impaired energy metabolism. J Neurol 258:2230–2239. https://doi.org/10.1007/s00415-011-6099-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Unschuld PG, Edden RAE, Carass A et al (2012) Brain metabolite alterations and cognitive dysfunction in early Huntington’s disease. Mov Disord 27:895–902. https://doi.org/10.1002/mds.25010

    Article  PubMed  PubMed Central  Google Scholar 

  218. Padowski JM, Weaver KE, Richards TL et al (2014) Neurochemical correlates of caudate atrophy in Huntington’s disease. Mov Disord 29:327–335. https://doi.org/10.1002/mds.25801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Alcauter-Solórzano S, Pasaye-Alcaraz EH, Alvarado-Alanis P et al (2010) Hydrogen magnetic resonance quantitative spectroscopy at 3 T in symptomatic and asymptomatic Huntington’s disease patients. Rev Neurol 51:208–212. https://doi.org/10.33588/rn.5104.2009173

    Article  PubMed  Google Scholar 

  220. Jenkins BG, Koroshetz WJ, Beal MF, Rosen BR (1993) Evidence for impairment of energy metabolism in vivo in Huntington’s disease using localized 1H NMR spectroscopy. Neurology 43:2689–2695. https://doi.org/10.1212/wnl.43.12.2689

    Article  CAS  PubMed  Google Scholar 

  221. Sturrock A, Laule C, Wyper K et al (2015) A longitudinal study of magnetic resonance spectroscopy Huntington’s disease biomarkers. Mov Disord 30:393–401. https://doi.org/10.1002/mds.26118

    Article  CAS  PubMed  Google Scholar 

  222. van Oostrom JCH, Sijens PE, Roos RAC, Leenders KL (2007) 1H magnetic resonance spectroscopy in preclinical Huntington disease. Brain Res 1168:67–71. https://doi.org/10.1016/j.brainres.2007.05.082

    Article  CAS  PubMed  Google Scholar 

  223. van den Bogaard SJA, Dumas EM, Teeuwisse WM et al (2014) Longitudinal metabolite changes in Huntington’s disease during disease onset. J Huntingtons Dis 3:377–386. https://doi.org/10.3233/JHD-140117

    Article  CAS  PubMed  Google Scholar 

  224. Hoang TQ, Bluml S, Dubowitz DJ et al (1998) Quantitative proton-decoupled 31P MRS and 1H MRS in the evaluation of Huntington’s and Parkinson’s diseases. Neurology 50:1033–1040. https://doi.org/10.1212/wnl.50.4.1033

    Article  CAS  PubMed  Google Scholar 

  225. Adanyeguh IM, Monin M, Rinaldi D et al (2018) Expanded neurochemical profile in the early stage of Huntington disease using proton magnetic resonance spectroscopy. NMR Biomed 31:e3880. https://doi.org/10.1002/nbm.3880

    Article  CAS  Google Scholar 

  226. Gómez-Ansón B, Alegret M, Muñoz E et al (2007) Decreased frontal choline and neuropsychological performance in preclinical Huntington disease. Neurology 68:906–910. https://doi.org/10.1212/01.wnl.0000257090.01107.2f

    Article  CAS  PubMed  Google Scholar 

  227. Reynolds NC, Prost RW, Mark LP, Joseph SA (2008) MR-spectroscopic findings in juvenile-onset Huntington’s disease. Mov Disord 23:1931–1935. https://doi.org/10.1002/mds.22245

    Article  PubMed  Google Scholar 

  228. Harms L, Meierkord H, Timm G et al (1997) Decreased N-acetyl-aspartate/choline ratio and increased lactate in the frontal lobe of patients with Huntington’s disease: a proton magnetic resonance spectroscopy study. J Neurol Neurosurg Psychiatry 62:27. https://doi.org/10.1136/jnnp.62.1.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Taylor-Robinson SD, Weeks RA, Bryant DJ et al (1996) Proton magnetic resonance spectroscopy in Huntington’s disease: evidence in favour of the glutamate excitotoxic theory? Mov Disord 11:167–173. https://doi.org/10.1002/mds.870110209

    Article  CAS  PubMed  Google Scholar 

  230. Taylor-Robinson S, Weeks R, Sargentoni J et al (1994) Evidence for glutamate excitotoxicity in Huntington’s disease with proton magnetic resonance spectroscopy. Lancet 343:1170. https://doi.org/10.1016/s0140-6736(94)90280-1

    Article  CAS  PubMed  Google Scholar 

  231. Mochel F, N’Guyen T, Deelchand D et al (2012) Abnormal response to cortical activation in early stages of Huntington disease. Mov Disord 27:907–910. https://doi.org/10.1002/mds.25009

    Article  CAS  PubMed  Google Scholar 

  232. Koroshetz WJ, Jenkins BG, Rosen BR, Beal MF (1997) Energy metabolism defects in Huntington’s disease and effects of coenzyme Q10. Ann Neurol 41:160–165. https://doi.org/10.1002/ana.410410206

    Article  CAS  PubMed  Google Scholar 

  233. Mugler JP III, Brookeman JR (1990) Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med 15:152–157. https://doi.org/10.1002/mrm.1910150117

    Article  PubMed  Google Scholar 

  234. Sudhyadhom A, Haq IU, Foote KD et al (2009) A high resolution and high contrast MRI for differentiation of subcortical structures for DBS targeting: the Fast Gray Matter Acquisition T1 Inversion Recovery (FGATIR). NeuroImage 47(Suppl 2):T44–T52. https://doi.org/10.1016/j.neuroimage.2009.04.018

    Article  PubMed  Google Scholar 

  235. Tziortzi AC, Searle GE, Tzimopoulou S et al (2011) Imaging dopamine receptors in humans with [11C]-(+)-PHNO: dissection of D3 signal and anatomy. NeuroImage 54:264–277. https://doi.org/10.1016/j.neuroimage.2010.06.044

    Article  CAS  PubMed  Google Scholar 

  236. Heckemann RA, Keihaninejad S, Aljabar P et al (2010) Improving intersubject image registration using tissue-class information benefits robustness and accuracy of multi-atlas based anatomical segmentation. NeuroImage 51:221–227. https://doi.org/10.1016/j.neuroimage.2010.01.072

    Article  PubMed  Google Scholar 

  237. Khan AR, Wang L, Beg MF (2008) FreeSurfer-initiated fully-automated subcortical brain segmentation in MRI using Large Deformation Diffeomorphic Metric Mapping. NeuroImage 41:735–746. https://doi.org/10.1016/j.neuroimage.2008.03.024

    Article  PubMed  Google Scholar 

  238. Coppen EM, Jacobs M, van den Berg-Huysmans AA et al (2018) Grey matter volume loss is associated with specific clinical motor signs in Huntington’s disease. Parkinsonism Relat Disord 46:56–61. https://doi.org/10.1016/j.parkreldis.2017.11.001

    Article  PubMed  Google Scholar 

  239. Xu L, Groth KM, Pearlson G et al (2009) Source-based morphometry: the use of independent component analysis to identify gray matter differences with application to schizophrenia. Hum Brain Mapp 30:711–724. https://doi.org/10.1002/hbm.20540

    Article  PubMed  Google Scholar 

  240. Ciarochi JA, Calhoun VD, Lourens S et al (2016) Patterns of co-occurring gray matter concentration loss across the Huntington disease prodrome. Front Neurol 7:147. https://doi.org/10.3389/fneur.2016.00147

    Article  PubMed  PubMed Central  Google Scholar 

  241. Coppen EM, van der Grond J, Hafkemeijer A et al (2016) Early grey matter changes in structural covariance networks in Huntington’s disease. NeuroImage Clin 12:806–814. https://doi.org/10.1016/j.nicl.2016.10.009

    Article  PubMed  PubMed Central  Google Scholar 

  242. Paulsen JS, Long JD, Ross CA et al (2014) Prediction of manifest Huntington’s disease with clinical and imaging measures: a prospective observational study. Lancet Neurol 13:1193–1201. https://doi.org/10.1016/S1474-4422(14)70238-8

    Article  PubMed  PubMed Central  Google Scholar 

  243. Le Bihan D, Mangin JF, Poupon C et al (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13:534–546. https://doi.org/10.1002/jmri.1076

    Article  PubMed  Google Scholar 

  244. Assaf Y, Pasternak O (2008) Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci 34:51–61. https://doi.org/10.1007/s12031-007-0029-0

    Article  CAS  PubMed  Google Scholar 

  245. Liu W, Yang J, Burgunder J et al (2016) Diffusion imaging studies of Huntington’s disease: a meta-analysis. Parkinsonism Relat Disord 32:94–101. https://doi.org/10.1016/j.parkreldis.2016.09.005

    Article  PubMed  Google Scholar 

  246. Stoffers D, Sheldon S, Kuperman JM et al (2010) Contrasting gray and white matter changes in preclinical Huntington disease: an MRI study. Neurology 74:1208–1216. https://doi.org/10.1212/WNL.0b013e3181d8c20a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Klöppel S, Draganski B, Golding CV et al (2008) White matter connections reflect changes in voluntary-guided saccades in pre-symptomatic Huntington’s disease. Brain 131:196–204. https://doi.org/10.1093/brain/awm275

    Article  PubMed  Google Scholar 

  248. Rosas HD, Lee SY, Bender AC et al (2010) Altered white matter microstructure in the corpus callosum in Huntington’s disease: implications for cortical “disconnection”. NeuroImage 49:2995–3004. https://doi.org/10.1016/j.neuroimage.2009.10.015

    Article  PubMed  Google Scholar 

  249. De Santis S, Gabrielli A, Palombo M et al (2011) Non-Gaussian diffusion imaging: a brief practical review. Magn Reson Imaging 29:1410–1416. https://doi.org/10.1016/j.mri.2011.04.006

    Article  PubMed  Google Scholar 

  250. Haacke EM, Cheng NYC, House MJ et al (2005) Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 23:1–25. https://doi.org/10.1016/j.mri.2004.10.001

    Article  CAS  PubMed  Google Scholar 

  251. Muller M, Leavitt BR (2014) Iron dysregulation in Huntington’s disease. J Neurochem 130:328–350. https://doi.org/10.1111/jnc.12739

    Article  CAS  PubMed  Google Scholar 

  252. Niu L, Ye C, Sun Y et al (2018) Mutant huntingtin induces iron overload via up-regulating IRP1 in Huntington’s disease. Cell Biosci 8:41. https://doi.org/10.1186/s13578-018-0239-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Chen JC, Hardy PA, Kucharczyk W et al (1993) MR of human postmortem brain tissue: correlative study between T2 and assays of iron and ferritin in Parkinson and Huntington disease. AJNR Am J Neuroradiol 14:275–281

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Dexter DT, Carayon A, Javoy-Agid F et al (1991) Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 114(Pt 4):1953–1975. https://doi.org/10.1093/brain/114.4.1953

    Article  PubMed  Google Scholar 

  255. Bartzokis G, Cummings J, Perlman S et al (1999) Increased basal ganglia iron levels in Huntington disease. Arch Neurol 56:569–574. https://doi.org/10.1001/archneur.56.5.569

    Article  CAS  PubMed  Google Scholar 

  256. Yousaf T, Dervenoulas G, Politis M (2018) Advances in MRI methodology. In: International review of neurobiology. Academic Press Inc., New York, NY, pp 31–76

    Google Scholar 

  257. Hopp K, Popescu BFG, McCrea RPE et al (2010) Brain iron detected by SWI high pass filtered phase calibrated with synchrotron X-ray fluorescence. J Magn Reson Imaging 31:1346–1354. https://doi.org/10.1002/jmri.22201

    Article  PubMed  PubMed Central  Google Scholar 

  258. Deistung A, Schäfer A, Schweser F et al (2013) Toward in vivo histology: a comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2*-imaging at ultra-high magnetic field strength. NeuroImage 65:299–314. https://doi.org/10.1016/j.neuroimage.2012.09.055

    Article  PubMed  Google Scholar 

  259. Lim IAL, Faria AV, Li X et al (2013) Human brain atlas for automated region of interest selection in quantitative susceptibility mapping: application to determine iron content in deep gray matter structures. NeuroImage 82:449–469. https://doi.org/10.1016/j.neuroimage.2013.05.127

    Article  PubMed  Google Scholar 

  260. Ross CA, Aylward EH, Wild EJ et al (2014) Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat Rev Neurol 10:204–216. https://doi.org/10.1038/nrneurol.2014.24

    Article  CAS  PubMed  Google Scholar 

  261. Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. NeuroImage 19:1273–1302. https://doi.org/10.1016/s1053-8119(03)00202-7

    Article  CAS  PubMed  Google Scholar 

  262. Friston KJ, Frith CD, Liddle PF, Frackowiak RS (1993) Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab 13:5–14. https://doi.org/10.1038/jcbfm.1993.4

    Article  CAS  PubMed  Google Scholar 

  263. Brockway JP (2000) Two functional magnetic resonance imaging f(MRI) tasks that may replace the gold standard, Wada testing, for language lateralization while giving additional localization information. Brain Cogn 43:57–59

    CAS  PubMed  Google Scholar 

  264. Birn RM, Cox RW, Bandettini PA (2002) Detection versus estimation in event-related fMRI: choosing the optimal stimulus timing. NeuroImage 15:252–264. https://doi.org/10.1006/nimg.2001.0964

    Article  PubMed  Google Scholar 

  265. Klöppel S, Draganski B, Siebner HR et al (2009) Functional compensation of motor function in pre-symptomatic Huntington’s disease. Brain 132:1624–1632. https://doi.org/10.1093/brain/awp081

    Article  PubMed  PubMed Central  Google Scholar 

  266. Lemiere J, Decruyenaere M, Evers-Kiebooms G et al (2002) Longitudinal study evaluating neuropsychological changes in so-called asymptomatic carriers of the Huntington’s disease mutation after 1 year. Acta Neurol Scand 106:131–141. https://doi.org/10.1034/j.1600-0404.2002.01192.x

    Article  CAS  PubMed  Google Scholar 

  267. Lemiere J, Decruyenaere M, Evers-Kiebooms G et al (2004) Cognitive changes in patients with Huntington’s disease (HD) and asymptomatic carriers of the HD mutation--a longitudinal follow-up study. J Neurol 251:935–942. https://doi.org/10.1007/s00415-004-0461-9

    Article  CAS  PubMed  Google Scholar 

  268. Sprengelmeyer R, Lange H, Hömberg V (1995) The pattern of attentional deficits in Huntington’s disease. Brain 118(Pt 1):145–152. https://doi.org/10.1093/brain/118.1.145

    Article  PubMed  Google Scholar 

  269. Georgiou-Karistianis N, Sritharan A, Farrow M et al (2007) Increased cortical recruitment in Huntington’s disease using a Simon task. Neuropsychologia 45:1791–1800. https://doi.org/10.1016/j.neuropsychologia.2006.12.023

    Article  PubMed  Google Scholar 

  270. Rao SM, Mayer AR, Harrington DL (2001) The evolution of brain activation during temporal processing. Nat Neurosci 4:317–323. https://doi.org/10.1038/85191

    Article  CAS  PubMed  Google Scholar 

  271. McColgan P, Gregory S, Razi A et al (2017) White matter predicts functional connectivity in premanifest Huntington’s disease. Ann Clin Transl Neurol 4:106–118. https://doi.org/10.1002/acn3.384

    Article  PubMed  PubMed Central  Google Scholar 

  272. Gregory S, Long JD, Klöppel S et al (2018) Testing a longitudinal compensation model in premanifest Huntington’s disease. Brain 141:2156–2166. https://doi.org/10.1093/brain/awy122

    Article  PubMed  PubMed Central  Google Scholar 

  273. Mlynárik V (2017) Introduction to nuclear magnetic resonance. Anal Biochem 529:4–9. https://doi.org/10.1016/j.ab.2016.05.006

    Article  CAS  PubMed  Google Scholar 

  274. Mochel F, Dubinsky JM, Henry P-G (2016) Magnetic resonance spectroscopy in Huntington’s disease. In: Öz G (ed) Magnetic resonance spectroscopy of degenerative brain diseases. Springer International Publishing, Cham, pp 103–120

    Chapter  Google Scholar 

  275. Buonocore MH, Maddock RJ (2015) Magnetic resonance spectroscopy of the brain: a review of physical principles and technical methods. Rev Neurosci 26:609–632. https://doi.org/10.1515/revneuro-2015-0010

    Article  PubMed  Google Scholar 

  276. Xu S, Yang J, Shen J (2008) Measuring N-acetylaspartate synthesis in vivo using proton magnetic resonance spectroscopy. J Neurosci Methods 172:8–12. https://doi.org/10.1016/j.jneumeth.2008.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Soares DP, Law M (2009) Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications. Clin Radiol 64:12–21. https://doi.org/10.1016/j.crad.2008.07.002

    Article  CAS  PubMed  Google Scholar 

  278. Danielsen ER, Ross B (1999) Magnetic resonance spectroscopy diagnosis of neurological diseases. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  279. López-Villegas D, Lenkinski RE, Wehrli SL et al (1995) Lactate production by human monocytes/macrophages determined by proton MR spectroscopy. Magn Reson Med 34:32–38

    Article  PubMed  Google Scholar 

  280. Srinivasan R, Cunningham C, Chen A et al (2006) TE-averaged two-dimensional proton spectroscopic imaging of glutamate at 3 T. NeuroImage 30:1171–1178

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marios Politis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

De Natale, E.R., Wilson, H., Politis, M. (2022). Imaging Biomarkers in Huntington’s Disease . In: Peplow, P.V., Martinez, B., Gennarelli, T.A. (eds) Neurodegenerative Diseases Biomarkers. Neuromethods, vol 173. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1712-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1712-0_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1711-3

  • Online ISBN: 978-1-0716-1712-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics