Skip to main content

Electromechanical Stimulation of 3D Cardiac Microtissues in a Heart-on-Chip Model

  • Protocol
  • First Online:
Book cover Organ-on-a-Chip

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2373))

Abstract

Modeling human cardiac tissues in vitro is essential to elucidate the biological mechanisms related to the heart physiopathology, possibly paving the way for new treatments. Organs-on-chips have emerged as innovative tools able to recreate tissue-specific microenvironments, guiding the development of miniaturized models and offering the opportunity to directly analyze functional readouts. Here we describe the fabrication and operational procedures for the development of a heart-on-chip model, reproducing cardiac biomimetic microenvironment. The device provides 3D cardiac microtissue with a synchronized electromechanical stimulation to support the tissue development. We additionally describe procedures for characterizing tissue evolution and functionality through immunofluorescence, real time qPCR, calcium imaging and microtissue contractility investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chiong M et al (2011) Cardiomyocyte death: mechanisms and translational implications. Cell Death Dis 2(12):e244. https://doi.org/10.1038/cddis.2011.130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vunjak Novakovic G, Eschenhagen T, Mummery C (2014) Myocardial tissue engineering: in vitro models. Cold Spring Harb Perspect Med 4(3):a014076. https://doi.org/10.1101/cshperspect.a014076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mathur A, Ma Z, Loskill P, Jeeawoody S, Healy KE (2016) In vitro cardiac tissue models: current status and future prospects. Adv Drug Deliv Rev 96:203–213. https://doi.org/10.1016/j.addr.2015.09.011

    Article  CAS  PubMed  Google Scholar 

  4. Ferrari E, Palma C, Vesentini S, Occhetta P, Rasponi M (2020) Integrating biosensors in organs-on-chip devices: a perspective on current strategies to monitor microphysiological systems. Biosensors 10(9):110. https://doi.org/10.3390/bios10090110

    Article  CAS  PubMed Central  Google Scholar 

  5. Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32:760–772

    Article  CAS  Google Scholar 

  6. Gupta K et al (2010) Lab-on-a-chip devices as an emerging platform for stem cell biology. Lab Chip 10:2019

    Article  CAS  Google Scholar 

  7. Ugolini GS, Cruz-Moreira D, Visone R, Redaelli A, Rasponi M (2016) Microfabricated physiological models for in vitro drug screening applications. Micromachines 7(12):233. https://doi.org/10.3390/mi7120233

    Article  PubMed Central  Google Scholar 

  8. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  CAS  Google Scholar 

  9. Griffith LG, Swartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7:211–224

    Article  CAS  Google Scholar 

  10. Folkman J, Greenspan HP (1975) Influence of geometry on control of cell growth. Biochim Biophys Acta 417:211–236

    CAS  PubMed  Google Scholar 

  11. Sniadecki NJ, Desai RA, Ruiz SA, Chen CS (2006) Nanotechnology for cell-substrate interactions. Ann Biomed Eng 34:59–74

    Article  Google Scholar 

  12. Hamon M, Hong JW (2013) New tools and new biology: recent miniaturized systems for molecular and cellular biology. Mol Cells 36(6):485–506. https://doi.org/10.1007/s10059-013-0333-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McDonald JC, Whitesides GM (2002) Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35(7):491–499. https://doi.org/10.1021/ar010110q

    Article  CAS  PubMed  Google Scholar 

  14. Occhetta P et al (2019) Hyperphysiological compression of articular cartilage induces an osteoarthritic phenotype in a cartilage-on-a-chip model. Nat Biomed Eng 3(7):545–557. https://doi.org/10.1038/s41551-019-0406-3

    Article  CAS  PubMed  Google Scholar 

  15. Huh D et al (2010) Reconstituting organ-level lung functions on a chip. Science 328:1662–1668

    Article  CAS  Google Scholar 

  16. Pavesi A et al (2015) Controlled electromechanical cell stimulation on-a-chip. Sci Rep 5

    Google Scholar 

  17. Marsano A et al (2016) Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues. Lab Chip 16:599–610

    Article  CAS  Google Scholar 

  18. Grosberg A, Alford PW, McCain ML, Parker KK (2011) Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab Chip 11:4165

    Article  CAS  Google Scholar 

  19. Boudou T et al (2012) A microfabricated platform to measure and manipulate the mechanics of engineered cardiac microtissues. Tissue Eng Part A 18:910–919

    Article  CAS  Google Scholar 

  20. Mathur A et al (2015) Human iPSC-based cardiac microphysiological system for drug screening applications. Sci Rep 5

    Google Scholar 

  21. Stoppel WL, Kaplan DL, Black LD (2016) Electrical and mechanical stimulation of cardiac cells and tissue constructs. Adv Drug Deliv Rev 96:135–155

    Article  CAS  Google Scholar 

  22. Nitsan I, Drori S, Lewis YE, Cohen S, Tzlil S (2016) Mechanical communication in cardiac cell synchronized beating. Nat Phys 12

    Google Scholar 

  23. Ruwhof C, van der Laarse A (2000) Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways. Cardiovasc Res 47:23–37

    Article  CAS  Google Scholar 

  24. Salameh A et al (2010) Cyclic mechanical stretch induces cardiomyocyte orientation and polarization of the gap junction protein connexin43. Circ Res 106:1592–1602

    Article  CAS  Google Scholar 

  25. Dhein S et al (2014) Mechanical control of cell biology. Effects of cyclic mechanical stretch on cardiomyocyte cellular organization. Prog Biophys Mol Biol 115:93–102

    Article  CAS  Google Scholar 

  26. Mangoni ME et al (2003) Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proc Natl Acad Sci U S A 100:5543–5548

    Article  CAS  Google Scholar 

  27. Fahrenbach JP, Mejia-Alvarez R, Banach K (2007) The relevance of non-excitable cells for cardiac pacemaker function. J Physiol 585:565–578

    Article  CAS  Google Scholar 

  28. Cimetta E, Godier-Furnémont A, Vunjak-Novakovic G (2013) Bioengineering heart tissue for in vitro testing. Curr Opin Biotechnol 24:926–932

    Article  CAS  Google Scholar 

  29. Visone R et al (2018) A microscale biomimetic platform for generation and electromechanical stimulation of 3D cardiac microtissues. APL Bioeng 2(4):046102. https://doi.org/10.1063/1.5037968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The silicon master mold fabrication was performed at PoliFAB, the micro- and nanofabrication facility of Politecnico di Milano. We thank Dr. Barbara Bettegazzi for the kind provision of rat cardiac hearts.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 841975.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Rasponi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Visone, R., Occhetta, P., Rasponi, M. (2022). Electromechanical Stimulation of 3D Cardiac Microtissues in a Heart-on-Chip Model. In: Rasponi, M. (eds) Organ-on-a-Chip. Methods in Molecular Biology, vol 2373. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1693-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1693-2_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1692-5

  • Online ISBN: 978-1-0716-1693-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics