Skip to main content

Three Methods for Peptide Cyclization Via Lactamization

  • Protocol
  • First Online:
Peptide Macrocycles

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2371))

Abstract

Lactamization is the key step in the synthesis of many compounds with macrocyclic structure. As the interest for these types of molecules grows in various fields such as drug discovery and nanomaterials, different methodologies to access them are being developed. Three different strategies to obtain cyclic peptides via lactamization are described in this chapter: solution-phase macrocyclization following solid-phase peptide synthesis (SPPS) of the linear precursor, SPPS and on-resin cyclization on the 2-chlorotrityl chloride (2-CTC) resin, and SPPS and on-resin cyclization by native chemical ligation on the amino-PEGA resin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Giordanetto F, Kihlberg J (2014) Macrocyclic drugs and clinical candidates: what can medicinal chemists learn from their properties? J Med Chem 57(2):278–295

    Article  CAS  Google Scholar 

  2. Driggers EM, Hale SP, Lee J, Terrett NK (2008) The exploration of macrocycles for drug discovery--an underexploited structural class. Nat Rev Drug Discov 7(7):608–624

    Article  CAS  Google Scholar 

  3. Morrison C (2018) Constrained peptides’ time to shine? Nat Rev Drug Discov 17(8):531–533

    Article  CAS  Google Scholar 

  4. Mallinson J, Collins I (2012) Macrocycles in new drug discovery. Future Med Chem 4(11):1409–1438

    Article  CAS  Google Scholar 

  5. Villar EA, Beglov D, Chennamadhavuni S, Porco JA Jr, Kozakov D, Vajda S, Whitty A (2014) How proteins bind macrocycles. Nat Chem Biol 10:723

    Article  CAS  Google Scholar 

  6. Whitty A, Viarengo LA, Zhong M (2017) Progress towards the broad use of non-peptide synthetic macrocycles in drug discovery. Org Biomol Chem 15:7729–7735

    Article  CAS  Google Scholar 

  7. Over B, Matsson P, Tyrchan C, Artursson P, Doak BC, Foley MA, Hilgendorf SE, Johnston MD, Lee I, Lewis RJ, McCarren P, Muncipinto G, Norinder U, Perry MWD, Duvall JR, Kihlberg J (2016) Structural and conformational determinants of macrocycle cell permeability. Nat Chem Biol 12(12):1065–1074

    Article  CAS  Google Scholar 

  8. Brea RJ, Reiriz C, Granja JR (2010) Towards functional bionanomaterials based on self-assembling cyclic peptidenanotubes. Chem Soc Rev 39:1448–1456

    Article  CAS  Google Scholar 

  9. Staderini M, Megia-Fernandez A, Dhaliwal K, Bradley M (2018) Peptides for optical medical imaging and steps towards therapy. Bioorg Med Chem 26:2816–2826

    Article  CAS  Google Scholar 

  10. Merrifield RB (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 85(14):2149–2154

    Article  CAS  Google Scholar 

  11. Merrifield RB (1986) Solid phase synthesis. Science 232:341

    Article  CAS  Google Scholar 

  12. Zompra AA, Galanis AS, Werbitzky O, Albericio F (2009) Manufacturing peptides as active pharmaceutical ingredientes. Future Med Chem 1(2):361–377

    Article  CAS  Google Scholar 

  13. Isied SS, Kuhen CG, Lyon JM, Merrifield RB (1982) Specific peptide sequences for metal ion coordination. 1. Solid-phase synthesis of cyclo-(Gly-His)3. J Am Chem Soc 104(9):2632–2634

    Article  CAS  Google Scholar 

  14. Rovero P, Quartara L, Fabbri G (1991) Synthesis of cyclic peptides on solid support. Tetrahedron Lett 32(23):2639–2642

    Article  CAS  Google Scholar 

  15. Trzeciak A, Bannwarth W (1992) Synthesis of ‘head-to-tail’ cyclized peptides on solid support by Fmoc chemistry. Tetrahedron Lett 33(32):4557–4560

    Article  CAS  Google Scholar 

  16. Kates SA, Solé NA, Johnson CR, Hudson D, Baranay G, Albericio F (1993) A novel, convenient, three-dimensional orthogonal strategy for solid-phase synthesis of cyclic peptides. Tetrahedron Lett 34(10):1549–1552

    Article  CAS  Google Scholar 

  17. Alsina J, Chiva C, Ortiz M, Rabanal F, Giralt E, Albericio F (1997) Active carbonate resins for solid-phase synthesis through the anchoring of hydroxyl function. Synthesis of cyclic and alcohol peptides. Tetrahedron Lett 38(5):883–886

    Article  CAS  Google Scholar 

  18. Alsina J, Rabanal F, Giralt E, Albericio F (1994) Solid-phase synthesis of “head-to-tail” cyclic peptides via lysine side-chain anchoring. Tetrahedron Lett 35(51):9633–9636

    Article  CAS  Google Scholar 

  19. García O, Nicolás E, Albericio F (2003) Solid-phase synthesis: a linker for side-chain anchoring of arginine. Tetrahedron Lett 44(28):5319–5321

    Article  Google Scholar 

  20. Cabrele C, Langer M, Beck-Sickinger AG (1999) Amino acid side chain attachment approach and its application to the synthesis of tyrosine-containing cyclic peptides. J Org Chem 64(12):4353–4361

    Article  CAS  Google Scholar 

  21. Kent S (2010) Origin of the chemical ligation concept for the total synthesis of enzymes (proteins). Biopolymers 94(4):iv–ix

    Article  CAS  Google Scholar 

  22. Yan LZ, Dawson PE (2001) Synthesis of peptides and proteins without cysteine residues by native chemical ligation combined with desulfurization. J Am Chem Soc 123(4):526–533

    Article  CAS  Google Scholar 

  23. Macmillan D (2006) Evolving strategies for protein synthesis converge on native chemical ligation. Angew Chem Int Ed 45(46):7668–7672

    Article  CAS  Google Scholar 

  24. Perrin DD, Armarego WLF (1988) Purification of laboratory chemicals, 3th edn. Pergamon Press, Oxford

    Google Scholar 

  25. Posada L, Serra G (2019) First total synthesis of versicotide D and analogs. Tetrahedron Lett 60:151281

    Article  CAS  Google Scholar 

  26. Subirós-Funosas R, Khattab SN, Nieto-Rodriguez L, El-Faham A, Albericio F (2013) Advances in acylation methodologies enabled by oxyma-based reagents. Aldrichimica Acta 46:21

    Google Scholar 

  27. Vazquez J, Qushair G, Albericio F (2003) Qualitative colorimetric tests for solid phase synthesis. Methods Enzymol 369:21–35

    Article  CAS  Google Scholar 

  28. Hojo H, Kobayashi H, Ubagai R, Asahina Y, Nakahara Y, Katayama H, Ito Y, Nakahara Y (2011) Efficient preparation of Fmoc-aminoacyl-N-ethylcysteine unit, a key device for the synthesis of peptidethioesters. Org Biomol Chem 9:6807–6813

    Article  CAS  Google Scholar 

  29. Hojo H, Onuma Y, Akimoto Y, Nakahara Y, Nakahara Y (2007) N-alkyl cysteine-assisted thioesterification of peptides. Tetrahedron Lett 48:25–28

    Article  CAS  Google Scholar 

  30. Posada, L.; Davyt, D.; Serra, G. First total synthesis of versicotide A, B and C. RSC Adv. 2020, 10, 43653.

    Google Scholar 

  31. Fagundez, C.; Sellanes, D.; Peña, S.; Scarone, L.; Aguiar, A. C. C.; de Souza, J.; Guido, R. V. C.; Stewart, L.; Yardley, V.; Ottilie, S.; Winzeler, E. A.; Gamo, F-J; Sanz, L. M.; Serra, G. L. Synthesis, Profiling, and in Vivo Evaluation of Cyclopeptides Containing N-Methyl Amino Acids as Antiplasmodial Agents. ACS Med. Chem. Lett. 2019, 10, 137.

    Google Scholar 

  32. Fagundez, C.; Sellanes, D.; Serra, G. Synthesis of Cyclic Peptides as Potential Anti-Malarials. ACS Comb. Sci. 2018, 20, 212.

    Google Scholar 

  33. Serra, G.; Posada, L.; Hojo, H. On-resin synthesis of cyclic peptides via tandem N-to S- acyl migration and intramolecular thiol additive-free native chemical ligation.Chem. Commun. 2020, 56, 956.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge grants from CSIC Grupos 2006 (Universidad de la República), PEDECIBA (Uruguay), International Collaborative Research Program of Institute for Protein Research, Osaka University (ICR-19-01), and a PhD fellowship (Laura Posada) from CAP (Comisión Académica de Posgrado, Universidad de la República).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria Serra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Posada, L., Serra, G. (2022). Three Methods for Peptide Cyclization Via Lactamization. In: Coppock, M.B., Winton, A.J. (eds) Peptide Macrocycles. Methods in Molecular Biology, vol 2371. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1689-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1689-5_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1688-8

  • Online ISBN: 978-1-0716-1689-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics