Skip to main content

Using the Automated Botanical Contact Device (ABCD) to Deliver Reproducible, Intermittent Touch Stimulation to Plants

  • Protocol
  • First Online:
Plant Gravitropism

Abstract

Despite mechanical stimulation having profound effects on plant growth and development and modulating responses to many other stimuli, including to gravity, much of the molecular machinery triggering plant mechanical responses remains unknown. This gap in our knowledge arises in part from difficulties in applying reproducible, long-term touch stimulation to plants. We describe the design and implementation of the Automated Botanical Contact Device (ABCD) that applies intermittent, controlled, and highly reproducible mechanical stimulation by drawing a plastic sheet across experimental plants. The device uses a computer numerical control platform and continuously monitors plant growth and development using automated computer vision and image analysis. The system is designed around an open-source architecture to help promote the generation of comparable datasets between laboratories. The ABCD also offers a scalable system that could be deployed in the controlled environment setting, such as a greenhouse, to manipulate plant growth and development through controlled, repetitive mechanostimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chehab EW, Eich E, Braam J (2009) Thigmomorphogenesis: a complex plant response to mechano-stimulation. J Exp Bot 60:43–56

    Article  CAS  Google Scholar 

  2. Toyota M, Gilroy S (2013) Gravitropism and mechanical signaling in plants. Am J Bot 100:111–125

    Article  CAS  Google Scholar 

  3. Braam J (2005) In touch: plant responses to mechanical stimuli. New Phytol 165:373–389

    Article  Google Scholar 

  4. Massa GD, Gilroy S (2003) Touch modulates gravity sensing to regulate the growth of primary roots of Arabidopsis thaliana. Plant J 33:435–445

    Article  Google Scholar 

  5. Xu Y, Berkowitz O, Narsai R et al (2019) Mitochondrial function modulates touch signalling in Arabidopsis thaliana. Plant J 97:623–645

    Article  CAS  Google Scholar 

  6. Monshausen GB, Haswell ES (2013) A force of nature: molecular mechanisms of mechanoperception in plants. J Exp Bot 64:4663–4680

    Google Scholar 

  7. Lange MJP, Lange T (2015) Touch-induced changes in Arabidopsis morphology dependent on gibberellin breakdown. Nat Plants 1:14025

    Article  CAS  Google Scholar 

  8. Hamant O, Haswell ES (2017) Life behind the wall: sensing mechanical cues in plants. BMC Biol 15:59

    Article  Google Scholar 

  9. Shih HW, Miller ND, Dai C et al (2014) The receptor-like kinase FERONIA is required for mechanical signal transduction in Arabidopsis seedlings. Curr Biol 24:1887–1892

    Article  CAS  Google Scholar 

  10. Lee D, Polisensky DH, Braam J (2005) Genome-wide identification of touch- and darkness-regulated Arabidopsis genes: a focus on calmodulin-like and XTH genes. New Phytol 165:429–444

    Article  CAS  Google Scholar 

  11. van Moerkercke A, Duncan O, Zander M et al (2019) A MYC2/MYC3/MYC4-dependent transcription factor network regulates water spray-responsive gene expression and jasmonate levels. Proc Natl Acad Sci U S A 116:23345–23356

    Article  Google Scholar 

  12. Nakagawa Y, Katagiri T, Shinozaki K et al (2007) Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots. Proc Natl Acad Sci U S A 104:3639–3644

    Article  CAS  Google Scholar 

  13. Wang Y, Wang B, Gilroy S et al (2011) CML24 is involved in root mechanoresponses and cortical microtubule orientation in Arabidopsis. J Plant Growth Regul 30:467–479

    Article  CAS  Google Scholar 

  14. Zha G, Wang B, Liu J et al (2016) Mechanical touch responses of Arabidopsis TCH1-3 mutant roots on inclined hard-agar surface. Int Agrophysics 30:105–111

    Article  CAS  Google Scholar 

  15. Jacques E, Verbelen JP, Vissenberg K (2013) Mechanical stress in Arabidopsis leaves orients microtubules in a “continuous” supracellular pattern. BMC Plant Biol 13:163

    Article  Google Scholar 

  16. Monshausen GB, Bibikova TN, Weisenseel MH et al (2009) Ca2+ regulates reactive oxygen species production and pH during mechanosensing in Arabidopsis roots. Plant Cell 21:2341–2356

    Article  CAS  Google Scholar 

  17. Gus-Mayer S, Naton B, Hahlbrock K et al (1998) Local mechanical stimulation induces components of the pathogen defense response in parsley. Proc Natl Acad Sci U S A 95:8398–8403

    Article  CAS  Google Scholar 

  18. Braam J, Davis RW (1990) Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell 60:357–364

    Article  CAS  Google Scholar 

  19. Knight MR, Smith SM, Trewavas AJ (2006) Wind-induced plant motion immediately increases cytosolic calcium. Proc Natl Acad Sci U S A 89:4967–4971

    Article  Google Scholar 

  20. Der Loughian C, Tadrist L, Allain J-M et al (2014) Measuring local and global vibration modes in model plants. Comptes Rendus Mécanique 342:1–7

    Article  Google Scholar 

  21. Jensen GS, Fal K, Hamant O et al (2017) The RNA polymerase-associated factor 1 complex is required for plant touch responses. J Exp Bot 68:499–511

    CAS  PubMed  Google Scholar 

  22. Benikhlef L, L’Haridon F, Abou-Mansour E et al (2013) Perception of soft mechanical stress in Arabidopsis leaves activates disease resistance. BMC Plant Biol 13:133

    Article  Google Scholar 

  23. Richter GL, Monshausen GB, Krol A et al (2009) Mechanical stimuli modulate lateral root organogenesis. Plant Physiol 151:1855–1866

    Article  CAS  Google Scholar 

  24. Paul-Victor C, Rowe N (2011) Effect of mechanical perturbation on the biomechanics, primary growth and secondary tissue development of inflorescence stems of Arabidopsis thaliana. Ann Bot 107:209–218

    Article  CAS  Google Scholar 

  25. Wang K, Law K, Leung M et al (2019) A labor-saving and repeatable touch-force signaling mutant screen protocol for the study of thigmomorphogenesis of a model plant Arabidopsis thaliana. J Vis Exp 150:e59392

    Google Scholar 

  26. Merchant N, Lyons E, Goff S et al (2016) The iPlant collaborative: cyberinfrastructure for enabling data to discovery for the life sciences. PLoS Biol 14:e1002342

    Article  Google Scholar 

  27. Schindelin J, Rueden CT, Hiner MC et al (2015) The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev 82:518–529

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the National Science Foundation (IOS1557899) and NASA (NNX13AM50G, NNX17AD52G, and 80NSSC19K0132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Gilroy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fitzgerald, C. et al. (2022). Using the Automated Botanical Contact Device (ABCD) to Deliver Reproducible, Intermittent Touch Stimulation to Plants. In: Blancaflor, E.B. (eds) Plant Gravitropism. Methods in Molecular Biology, vol 2368. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1677-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1677-2_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1676-5

  • Online ISBN: 978-1-0716-1677-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics