Skip to main content

A High-Throughput Method to Prioritize PROTAC Intracellular Target Engagement and Cell Permeability Using NanoBRET

  • Protocol
  • First Online:
Targeted Protein Degradation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2365))

Abstract

Target engagement and cell permeation are important parameters that may limit the efficacy of proteolysis-targeting chimeras (PROTACs). Here, we present an approach that facilitates both the quantitation of PROTAC binding affinity for an E3 ligase of interest, as well as the assessment of relative intracellular availability. We present a panel of E3 ligase target engagement assays based upon the NanoBRET Target Engagement platform. Querying E3 ligase engagement under live-cell and permeabilized-cell conditions allow calculation of an availability index that can be used to rank order the intracellular availability of PROTACs. Here we present examples where the cellular availability of PROTACs and their monovalent precursors are prioritized using NanoBRET assays for CRBN or VHL E3 ligases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shapira M, Calabrese MF, Bullock AN, Crews CM (2019) Targeted protein degradation: expanding the toolbox. Nat Rev Drug Discov 18(12):949–963. https://doi.org/10.1038/s41573-019-0047-y

    Article  CAS  Google Scholar 

  2. Daniels DL, Riching KM, Urh M (2019) Monitoring and deciphering protein degradation pathways inside cells. Drug Discov Today Technol 31:61–68. https://doi.org/10.1016/j.ddtec.2018.12.001

    Article  PubMed  Google Scholar 

  3. Liu J, Ma J, Xia J, Li Y, Wang ZP, Wei W (2020) PROTACs: a novel strategy for cancer therapy. Semin Cancer Biol 67(Pt 2):171–179. https://doi.org/10.1016/j.semcancer.2020.02.006

    Article  CAS  PubMed  Google Scholar 

  4. Maple HJ, Clayden N, Baron A, Stacey C, Felix R (2019) Developing degraders: principles and perspectives on design and chemical space. MedChemComm 10(10):1755–1764. https://doi.org/10.1039/c9md00272c

    Article  CAS  PubMed  Google Scholar 

  5. Soares P, Gadd MS, Frost J, Galdeano C, Ellis L, Epemolu O, Rocha S, Read KD, Ciulli A (2018) Group-Based Optimization of Potent and Cell-Active Inhibitors of the Von Hippel-Lindau (VHL) E3 Ubiquitin Ligase: Structure-Activity Relationships Leading to the Chemical Probe (2S,4R)-1-((S)-2-(1-Cyanocyclopropanecarboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (VH298). J Med Chem 61(2):599–618. https://doi.org/10.1021/acs.jmedchem.7b00675

    Article  CAS  PubMed  Google Scholar 

  6. Foley CA, Potjewyd F, Lamb KN, James LI, Frye SV (2020) Assessing the cell permeability of bivalent chemical degraders using the chloroalkane penetration assay. ACS Chem Biol 15(1):290–295

    Article  CAS  Google Scholar 

  7. Zoppi V, Hughes SJ, Maniaci C, Testa A, Gmaschitz T, Wieshofer C, Koegl M, Riching KM, Daniels DL, Spallarossa A, Ciulli A (2019) Iterative design and optimization of initially inactive proteolysis targeting chimeras (PROTACs) identify VZ185 as a potent, fast, and selective von hipper-Lindau (VHL) based dual degrader probe of BRD9 and BRD7. J Med Chem 62(2):699–726

    Article  CAS  Google Scholar 

  8. Robers MB, Dart ML, Woodroofe CC, Zimprich CA, Kirkland TA, Machleidt T, Kupcho KR, Levin S, Hartnett JR, Zimmerman K, Niles AL, Ohana RF, Daniels DL, Slater M, Wood MG, Cong M, Cheng YQ, Wood KV (2015) Target engagement and drug residence time can be observed in living cells with BRET. Nat Commun 6:10091. https://doi.org/10.1038/ncomms10091

    Article  CAS  PubMed  Google Scholar 

  9. Robers MB, Vasta JD, Corona CR, Ohana RF, Hurst R, Jhala MA, Comess KM, Wood KV (2019) Quantitative, real-time measurements of intracellular target engagement using energy transfer. Methods Mol Biol 1888:45–71. https://doi.org/10.1007/978-1-4939-8891-4_3

    Article  CAS  PubMed  Google Scholar 

  10. Vasta JD, Corona CR, Wilkinson J, Zimprich CA, Hartnett JR, Ingold MR, Zimmerman K, Machleidt T, Kirkland TA, Huwiler KG, Ohana RF, Slater M, Otto P, Cong M, Wells CI, Berger BT, Hanke T, Glas C, Ding K, Drewry DH, Huber KVM, Willson TM, Knapp S, Muller S, Meisenheimer PL, Fan F, Wood KV, Robers MB (2018) Quantitative, wide-Spectrum kinase profiling in live cells for assessing the effect of cellular ATP on target engagement. Cell Chem Biol 25(2):206–214. e211. https://doi.org/10.1016/j.chembiol.2017.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mateus A, Treyer A, Wegler C, Karlgren M, Matsson P, Artursson P (2017) Intracellular drug bioavailability: a new predictor of system-dependent drug disposition. Sci Rep 7:43047. https://doi.org/10.1038/srep43047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hulme EC, Trevethick MA (2010) Ligand binding assays at equilbrium: validation and interpretation. Br J Pharmacol 161:1219–1237

    Article  CAS  Google Scholar 

  13. Frost J, Galdeano C, Soares P, Gadd MS, Grzes KM, Ellis L, Epemolu O, Shimamura S, Bantscheff M, Grandi P, Read KD, Cantrell DA, Rocha S, Ciulli A (2016) Potent and selective chemical probe of hypoxic signaling downstream of HIF-α hydroxylation via VHL inhibition. Nat Commun 7:13312. https://doi.org/10.1038/ncomms13312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Raina K, Lu J, Qian Y, Altieri M, Gordon D, Rossi AMK, Wang J, Chen X, Dong H, Siu K, Winkler JD, Crew AP, Crews CM, Coleman KG (2016) PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc Natl Acad Sci U S A 113(26):7124–7129. https://doi.org/10.1073/pnas.1521738113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Winter GE, Mayer A, Buckley DL, Erb MA, Roderick JE, Vittori S, Reyes JM, Iulio JD, Souza A, Ott CJ, Roberts JM, Zeid R, Scott TG, Paulk J, Lachance K, Olson CM, Dastjerdi S, Bauer S, Lin CY, Gray NS, Kelliher MA, Churchman LS, Bradner JE (2017) BET bromodomain proteins function as master transcription elongation factors independent of CDK9 recruitment. Mol Cell 67(1):5–18. https://doi.org/10.1016/j.molcel.2017.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James D. Vasta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vasta, J.D., Corona, C.R., Robers, M.B. (2021). A High-Throughput Method to Prioritize PROTAC Intracellular Target Engagement and Cell Permeability Using NanoBRET. In: Cacace, A.M., Hickey, C.M., Békés, M. (eds) Targeted Protein Degradation. Methods in Molecular Biology, vol 2365. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1665-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1665-9_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1664-2

  • Online ISBN: 978-1-0716-1665-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics