Skip to main content

Protein Ligand Interactions Using Surface Plasmon Resonance

  • Protocol
  • First Online:
Targeted Protein Degradation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2365))

Abstract

Surface Plasmon Resonance (SPR) is a powerful biophysical method for characterizing small molecule binding to proteins. Owing to its ability to characterize binary inteactions between warheads and E3 ligases or substrates, SPR is a useful tool for the development of targeted protein degraders. SPR is also an effective method for optimizing linkers and characterizing ternary complex interactions that are mediated by heterobifunctional ligands (Roy et al. ACS Chem Biol 14:361–368, 2019). Recent advances in the throughput of modern instruments have improved the ability of SPR to rapidly triage ligands based on binding kinetics and affinity, making this technique invaluable for driving degrader optimization. This chapter describes the characterization of ligands binding to the Thalidomide Binding Domain of mouse Cereblon (mCRBN-TBD) using the Biacore 8K+.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanson SM, Georghiou G, Thakur MK, Miller WT, Rest JS, Chodera JD, Seeliger MA (2019) What makes a kinase promiscuous for inhibitors? Cell Chem Biol 26(3):390–399.e5. https://doi.org/10.1016/j.chembiol.2018.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Roy MJ, Winkler S, Hughes SJ, Whitworth C, Galant M, Farnaby W, Rumpel K, Ciulli A (2019) SPR-measured dissociation kinetics of PROTAC ternary complexes influence target degradation rate. ACS Chem Biol 14(3):361–368. https://doi.org/10.1021/acschembio.9b00092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Smith BE, Wang SL, Jaime-Figueroa S, Harbin A, Wang J, Hamman BD, Crews CM (2019) Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase. Nat Commun 10(1):1–13. https://doi.org/10.1038/s41467-018-08027-7

    Article  CAS  Google Scholar 

  4. Zorba A, Nguyen C, Xu Y, Starr J, Borzilleri K, Smith J, Zhu H, Farley KA, Ding W, Schiemer J, Feng X, Chang JS, Uccello DP, Young JA, Garcia-Irrizary CN, Czabaniuk L, Schuff B, Oliver R, Montgomery J, Calabrese MF (2018) Delineating the role of cooperativity in the design of potent PROTACs for BTK. Proc Natl Acad Sci U S A 115(31):E7285–E7292. https://doi.org/10.1073/pnas.1803662115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Markey F (2000) Principles of surface Plasmon resonance. In: Real-time analysis of biomolecular interactions. Springer Japan, Tokyo, pp 13–22. https://doi.org/10.1007/978-4-431-66970-8_2

    Chapter  Google Scholar 

  6. Schasfoort RBM (2017) Chapter 1. Introduction to surface plasmon resonance. In: Handbook of surface plasmon resonance. Royal Society of Chemistry, London, pp 1–26. https://doi.org/10.1039/9781788010283-00001

    Chapter  Google Scholar 

  7. Chamberlain PP, Lopez-Girona A, Miller K, Carmel G, Pagarigan B, Chie-Leon B, Rychak E, Corral LG, Ren YJ, Wang M, Riley M, Delker SL, Ito T, Ando H, Mori T, Hirano Y, Handa H, Hakoshima T, Daniel TO, Cathers BE (2014) Structure of the human Cereblon–DDB1–lenalidomide complex reveals basis for responsiveness to thalidomide analogs. Nat Struct Mol Biol 21(9):803–809. https://doi.org/10.1038/nsmb.2874

    Article  CAS  PubMed  Google Scholar 

  8. Mori T, Ito T, Liu S, Ando H, Sakamoto S, Yamaguchi Y, Tokunaga E, Shibata N, Handa H, Hakoshima T (2018) Structural basis of thalidomide enantiomer binding to cereblon. Sci Rep 8(1):1294. https://doi.org/10.1038/s41598-018-19202-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yamshon S, Ruan J (2019) IMiDs new and old. Curr Hematol Malig Rep 14(5):414–425. https://doi.org/10.1007/s11899-019-00536-6

    Article  PubMed  Google Scholar 

  10. Winter GE, Buckley DL, Paulk J, Roberts JM, Souza A, Dhe-Paganon S, Bradner JE (2015) Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348(6241):1376–1381. https://doi.org/10.1126/science.aab1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Piya S, Bhattacharya S, Mu H, Lorenzi PL, McQueen T, Davis ER, Ruvolo V, Baran N, Qian Y, Crews C, Kantarjian HM, Andreeff M, Borthakur G (2016) BRD4 proteolysis targeting chimera (PROTAC) ARV-825, causes sustained degradation of BRD4 and modulation of chemokine receptors, cell adhesion and metabolic targets in leukemia resulting in profound anti-leukemic effects. Blood 128(22):748. https://doi.org/10.1182/blood.v128.22.748.748

    Article  Google Scholar 

  12. Biacore Assay Handbook 29-0194-00 Edition AA, Cytiva Life Sciences. https://www.cytivalifesciences.co.jp/contact/pdf/BiacoreAssayHandbook.pdf

  13. Bondeson DP, Smith BE, Burslem GM, Buhimschi AD, Hines J, Jaime-Figueroa S, Wang J, Hamman BD, Ishchenko A, Crews CM (2018) Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Che Biol 25(1):78–87.e5. https://doi.org/10.1016/j.chembiol.2017.09.010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks A. J. H and H. L. for intellectual contributions and edits, R. S. for stellar Biacore support and C.M.Y for help rendering compound structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nichole O’Connell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

O’Connell, N. (2021). Protein Ligand Interactions Using Surface Plasmon Resonance. In: Cacace, A.M., Hickey, C.M., Békés, M. (eds) Targeted Protein Degradation. Methods in Molecular Biology, vol 2365. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1665-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1665-9_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1664-2

  • Online ISBN: 978-1-0716-1665-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics