Skip to main content

Design of Repair Templates for CRISPR-Cas9-Triggered Homologous Recombination in Caenorhabditis elegans

  • Protocol
  • First Online:
CRISPR-Cas Methods

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 2195 Accesses

Abstract

CRISPR-Cas9 is the current choice for genome editing for its versatility and specificity. The Cas9 endonuclease makes double-strand breaks at the target sites, which are repaired via non-homologous end-joining or homologous recombination. So far, various genome editing methods using CRISPR-Cas have been developed for Caenorhabditis elegans. However, repairing a double-strand break via homologous recombination is a crucial step to modify a genome in an error-free manner. Here, we focus on a procedure on how to prepare repair templates for precise genome editing via homologous recombination in C. elegans, which applies to a variety of CRISPR-Cas methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31(3):227–229. https://doi.org/10.1038/nbt.2501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Amacher SL (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26(6):702–708. https://doi.org/10.1038/nbt1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li D, Qiu Z, Shao Y, Chen Y, Guan Y, Liu M, Li Y, Gao N, Wang L, Lu X, Zhao Y, Liu M (2013) Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol 31(8):681–683. https://doi.org/10.1038/nbt.2661

    Article  CAS  PubMed  Google Scholar 

  4. Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Menoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325(5939):433. https://doi.org/10.1126/science.1172447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Port F, Chen HM, Lee T, Bullock SL (2014) Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proc Natl Acad Sci U S A 111(29):E2967–E2976. https://doi.org/10.1073/pnas.1405500111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bibikova M, Golic M, Golic KG, Carroll D (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161(3):1169–1175

    Article  CAS  Google Scholar 

  7. Kim HM, Colaiacovo MP (2014) ZTF-8 interacts with the 9-1-1 complex and is required for DNA damage response and double-Strand break repair in the C. elegans Germline. PLoS Genet 10(10):e1004723. https://doi.org/10.1371/journal.pgen.1004723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Norris AD, Kim HM, Colaiacovo MP, Calarco JA (2015) Efficient genome editing in Caenorhabditis elegans with a toolkit of dual-marker selection cassettes. Genetics 201(2):449–458. https://doi.org/10.1534/genetics.115.180679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim HM, Colaiacovo MP (2015) New insights into the post-translational regulation of DNA damage response and double-strand break repair in Caenorhabditis elegans. Genetics 200(2):495–504. https://doi.org/10.1534/genetics.115.175661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tzur YB, Friedland AE, Nadarajan S, Church GM, Calarco JA, Colaiacovo MP (2013) Heritable custom genomic modifications in Caenorhabditis elegans via a CRISPR-Cas9 system. Genetics 195(3):1181–1185. https://doi.org/10.1534/genetics.113.156075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Friedland AE, Tzur YB, Esvelt KM, Colaiacovo MP, Church GM, Calarco JA (2013) Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods 10(8):741–743. https://doi.org/10.1038/nmeth.2532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim HM, Colaiacovo MP (2019) CRISPR-Cas9-guided genome engineering in Caenorhabditis elegans. Curr Protoc Mol Biol 129(1):e106. https://doi.org/10.1002/cpmb.106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim HM, Tian S, Wang S (2020) An affordable plasmid miniprep suitable for proficient microinjection in Caenorhabditis elegans. 3 Biotech 10(8):350. https://doi.org/10.1007/s13205-020-02346-7

    Article  PubMed  PubMed Central  Google Scholar 

  14. Merlin C, Beaver LE, Taylor OR, Wolfe SA, Reppert SM (2013) Efficient targeted mutagenesis in the monarch butterfly using zinc-finger nucleases. Genome Res 23(1):159–168. https://doi.org/10.1101/gr.145599.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Awata H, Watanabe T, Hamanaka Y, Mito T, Noji S, Mizunami M (2015) Knockout crickets for the study of learning and memory: Dopamine receptor Dop1 mediates aversive but not appetitive reinforcement in crickets. Sci Rep 5:15885. https://doi.org/10.1038/srep15885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Young JJ, Cherone JM, Doyon Y, Ankoudinova I, Faraji FM, Lee AH, Ngo C, Guschin DY, Paschon DE, Miller JC, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Harland RM, Zeitler B (2011) Efficient targeted gene disruption in the soma and germ line of the frog Xenopus tropicalis using engineered zinc-finger nucleases. Proc Natl Acad Sci U S A 108(17):7052–7057. https://doi.org/10.1073/pnas.1102030108

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kistler KE, Vosshall LB, Matthews BJ (2015) Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti. Cell Rep 11(1):51–60. https://doi.org/10.1016/j.celrep.2015.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Molla KA, Shih J, Yang Y (2020) Single-nucleotide editing for zebra3 and wsl5 phenotypes in rice using CRISPR/Cas9-mediated adenine base editors. aBIOTECH 1:106–118. https://doi.org/10.1007/s42994-020-00018-x

    Article  Google Scholar 

  19. Shimatani Z, Kashojiya S, Takayama M, Terada R, Arazoe T, Ishii H, Teramura H, Yamamoto T, Komatsu H, Miura K, Ezura H, Nishida K, Ariizumi T, Kondo A (2017) Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol 35(5):441–443. https://doi.org/10.1038/nbt.3833

    Article  CAS  PubMed  Google Scholar 

  20. Xie K, Yang Y (2013) RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant 6(6):1975–1983. https://doi.org/10.1093/mp/sst119

    Article  CAS  Google Scholar 

  21. van Schendel R, Roerink SF, Portegijs V, van den Heuvel S, Tijsterman M (2015) Polymerase Theta is a key driver of genome evolution and of CRISPR/Cas9-mediated mutagenesis. Nat Commun 6:7394. https://doi.org/10.1038/ncomms8394

    Article  CAS  PubMed  Google Scholar 

  22. Chen X, Li M, Feng X, Guang S (2015) Targeted chromosomal translocations and essential gene knockout using CRISPR/Cas9 technology in Caenorhabditis elegans. Genetics 201(4):1295–1306. https://doi.org/10.1534/genetics.115.181883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31(3):233–239

    Google Scholar 

  24. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ren X, Yang Z, Xu J, Sun J, Mao D, Hu Y, Yang SJ, Qiao HH, Wang X, Hu Q, Deng P, Liu LP, Ji JY, Li JB, Ni JQ (2014) Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. Cell Rep 9(3):1151–1162. https://doi.org/10.1016/j.celrep.2014.09.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Paix A, Wang Y, Smith HE, Lee CY, Calidas D, Lu T, Smith J, Schmidt H, Krause MW, Seydoux G (2014) Scalable and versatile genome editing using linear DNAs with microhomology to Cas9 sites in Caenorhabditis elegans. Genetics 198(4):1347–1356. https://doi.org/10.1534/genetics.114.170423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ward JD (2015) Rapid and precise engineering of the Caenorhabditis elegans genome with lethal mutation co-conversion and inactivation of NHEJ repair. Genetics 199(2):363–377. https://doi.org/10.1534/genetics.114.172361

    Article  CAS  PubMed  Google Scholar 

  28. Zhao P, Zhang Z, Ke H, Yue Y, Xue D (2014) Oligonucleotide-based targeted gene editing in C. elegans via the CRISPR/Cas9 system. Cell Res 24(2):247–250. https://doi.org/10.1038/cr.2014.9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim H, Ishidate T, Ghanta KS, Seth M, Conte D Jr, Shirayama M, Mello CC (2014) A co-CRISPR strategy for efficient genome editing in Caenorhabditis elegans. Genetics 197(4):1069–1080. https://doi.org/10.1534/genetics.114.166389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Summer H, Gramer R, Droge P (2009) Denaturing urea polyacrylamide gel electrophoresis (urea PAGE). J Vis Exp (32). https://doi.org/10.3791/1485

  31. DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41(7):4336–4343. https://doi.org/10.1093/nar/gkt135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bottcher R, Hollmann M, Merk K, Nitschko V, Obermaier C, Philippou-Massier J, Wieland I, Gaul U, Forstemann K (2014) Efficient chromosomal gene modification with CRISPR/cas9 and PCR-based homologous recombination donors in cultured Drosophila cells. Nucleic Acids Res 42(11):e89. https://doi.org/10.1093/nar/gku289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dickinson DJ, Pani AM, Heppert JK, Higgins CD, Goldstein B (2015) Streamlined genome engineering with a self-excising drug selection cassette. Genetics 200(4):1035–1049. https://doi.org/10.1534/genetics.115.178335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC No. 31972876) award and Tianjin University grant to H.M.K. The authors thank Dr. Mario Marchisio for proofreading and the comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun-Min Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kim, HM., Zhang, X. (2021). Design of Repair Templates for CRISPR-Cas9-Triggered Homologous Recombination in Caenorhabditis elegans. In: Islam, M.T., Molla, K.A. (eds) CRISPR-Cas Methods. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1657-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1657-4_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1656-7

  • Online ISBN: 978-1-0716-1657-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics