Skip to main content

CRISPR-Cas12a-Based DNA Detection for Fast Pathogen Diagnosis and GMO Test in Plants

  • Protocol
  • First Online:
CRISPR-Cas Methods

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

DNA test is widely used in plant pathogen diagnosis and genetically modified organism (GMO) administration. To date, a low-cost, user-friendly, and field-deployable DNA test method with high accuracy and sensitivity is still limited. Recently, the RNA programmable nuclease of CRISPR-Cas is engineered as a new nucleic acid detection platform, providing a novel and promising DNA test strategy for in-field crop disease diagnosis and GMO identification. In this study, we describe an all-paper-based DNA test method using CRISPR-Cas12a. This method combines filter-paper-based DNA purification, recombinase polymerase amplification, target gene detection with Cas12a, and lateral flow assay. Owing to its simplicity, efficiency, robustness, and low-cost, this all-paper-based Cas12a DNA test method could be easily applied in field for crop disease diagnosis and GMO test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drake TA, Hindler JA, Berlin OG, Bruckner DA (1987) Rapid identification of Mycobacterium avium complex in culture using DNA probes. J Clin Microbiol 25(8):1442–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Holst-Jensen A, Ronning SB, Lovseth A, Berdal KG (2003) PCR technology for screening and quantification of genetically modified organisms (GMOs). Anal Bioanal Chem 375(8):985–993. https://doi.org/10.1007/s00216-003-1767-7

    Article  CAS  PubMed  Google Scholar 

  3. Mullis KB (1990) The unusual origin of the polymerase chain reaction. Sci Am 262(4):56–61., 64-55. https://doi.org/10.1038/scientificamerican0490-56

    Article  CAS  PubMed  Google Scholar 

  4. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28(12):E63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Piepenburg O, Williams CH, Stemple DL, Armes NA (2006) DNA detection using recombination proteins. PLoS Biol 4(7):1115–1121. https://doi.org/10.1371/journal.pbio.0040204

    Article  CAS  Google Scholar 

  6. Wang H, La Russa M, Qi LS (2016) CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem 85:227–264. https://doi.org/10.1146/annurev-biochem-060815-014607

    Article  CAS  PubMed  Google Scholar 

  7. Molla KA, Karmakar S, Islam MT (2020) Wide horizons of CRISPR-Cas-derived technologies for basic biology, agriculture, and medicine. In: Islam MT, Bhowmik PK, Molla KA (eds) CRISPR-Cas methods. Springer, pp 1–23. https://doi.org/10.1007/978-1-0716-0616-2_1

    Chapter  Google Scholar 

  8. Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM, Doudna JA (2018) CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360(6387):436–439. https://doi.org/10.1126/science.aar6245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, Verdine V, Donghia N, Daringer NM, Freije CA, Myhrvold C, Bhattacharyya RP, Livny J, Regev A, Koonin EV, Hung DT, Sabeti PC, Collins JJ, Zhang F (2017) Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356(6336):438–442. https://doi.org/10.1126/science.aam9321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Harrington LB, Burstein D, Chen JS, Paez-Espino D, Ma E, Witte IP, Cofsky JC, Kyrpides NC, Banfield JF, Doudna JA (2018) Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 362(6416):839–842. https://doi.org/10.1126/science.aav4294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759–771. https://doi.org/10.1016/j.cell.2015.09.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zetsche B, Heidenreich M, Mohanraju P, Fedorova I, Kneppers J, DeGennaro EM, Winblad N, Choudhury SR, Abudayyeh OO, Gootenberg JS, Wu WY, Scott DA, Severinov K, van der Oost J, Zhang F (2017) Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat Biotechnol 35(1):31–34. https://doi.org/10.1038/nbt.3737

    Article  CAS  PubMed  Google Scholar 

  13. Teng F, Guo L, Cui T, Wang XG, Xu K, Gao Q, Zhou Q, Li W (2019) CDetection: CRISPR-Cas12b-based DNA detection with sub-attomolar sensitivity and single-base specificity. Genome Biol 20(1):132. https://doi.org/10.1186/s13059-019-1742-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li SY, Cheng QX, Wang JM, Li XY, Zhang ZL, Gao S, Cao RB, Zhao GP, Wang J (2018) CRISPR-Cas12a-assisted nucleic acid detection. Cell Discov 4:20. https://doi.org/10.1038/s41421-018-0028-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang B, Wang R, Wang D, Wu J, Li J, Wang J, Liu H, Wang Y (2019) Cas12aVDet: a CRISPR/Cas12a-based platform for rapid and visual nucleic acid detection. Anal Chem 91(19):12156–12161. https://doi.org/10.1021/acs.analchem.9b01526

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Y-m, Zhang Y, Xie K (2020) Evaluation of CRISPR/Cas12a-based DNA detection for fast pathogen diagnosis and GMO test in rice. Mol Breed 40(1):11. https://doi.org/10.1007/s11032-019-1092-2

    Article  CAS  Google Scholar 

  17. Mason MG, Botella JR (2020) Rapid (30-second), equipment-free purification of nucleic acids using easy-to-make dipsticks. Nat Protoc 15(11):3663–3677. https://doi.org/10.1038/s41596-020-0392-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zou Y, Mason MG, Wang Y, Wee E, Turni C, Blackall PJ, Trau M, Botella JR (2017) Nucleic acid purification from plants, animals and microbes in under 30 seconds. PLoS Biol 15(11):e2003916. https://doi.org/10.1371/journal.pbio.2003916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu W, Liu J, Triplett L, Leach JE, Wang G-L (2014) Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu Rev Phytopathol 52(1):213–241. https://doi.org/10.1146/annurev-phyto-102313-045926

    Article  CAS  PubMed  Google Scholar 

  20. Tang W, Chen H, Xu C, Li X, Lin Y, Zhang Q (2006) Development of insect-resistant transgenic indica rice with a synthetic cry1C* gene. Mol Breed 18(1):1. https://doi.org/10.1007/s11032-006-9002-9

    Article  CAS  Google Scholar 

  21. Mason MG, Botella JR (2020) Rapid (30-second), equipment-free purification of nucleic acids using easy-to-make dipsticks. Nat Protocols 15(11):3663–3677. https://doi.org/10.1038/s41596-020-0392-7

    Article  CAS  PubMed  Google Scholar 

  22. Higgins M, Ravenhall M, Ward D, Phelan J, Ibrahim A, Forrest MS, Clark TG, Campino S (2019) PrimedRPA: primer design for recombinase polymerase amplification assays. Bioinformatics 35(4):682–684. https://doi.org/10.1093/bioinformatics/bty701

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Profs. Yongjun Lin and Hao Chen for providing the Bt-rice plants. This study was supported by the National Natural Science Foundation of China (31622047), National Transgenic Science and Technology program (2018ZX08010-05B), National Key Laboratory of Crop Genetic Improvement, and State Key Laboratory of Hybrid Rice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kabin Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, YM., Yang, Y., Xie, K. (2021). CRISPR-Cas12a-Based DNA Detection for Fast Pathogen Diagnosis and GMO Test in Plants. In: Islam, M.T., Molla, K.A. (eds) CRISPR-Cas Methods. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1657-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1657-4_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1656-7

  • Online ISBN: 978-1-0716-1657-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics