Skip to main content

Behavioral Assessment of Vestibular Dysfunction in Rats

  • Protocol
  • First Online:
Experimental Neurotoxicology Methods

Part of the book series: Neuromethods ((NM,volume 172))

Abstract

Rodents with toxic lesions in the vestibular system display abnormalities in spontaneous and reflex behaviors that are easily recognized by knowledgeable observers. However, a quantitative assessment of the functional deficit is necessary in addition to its simple identification. In this chapter, we describe a semi-quantitative behavioral test battery that our laboratory has successfully used for almost three decades to evaluate vestibular toxicity in rats. We also describe a method recently developed for the same purpose. Using high-speed video recording, the minimum angle formed by the nose, the back of the neck, and the base of the tail during the tail-lift reflex is obtained as a fully objective and quantitative measure of vestibular function. Data collected on the same animals show high correlation values between the test battery scores and the tail-lift angles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bronstein AM (2013) Oxford textbook of vertigo and imbalance. Oxford University Press, Oxford

    Book  Google Scholar 

  2. Delay J, Pichot P, Thuillier J, Marquiset JP (1952) Action de l’amino-dipropionitrile sur le comportement moteur de la souris blanche. C R Sot Biol 146:533–534

    CAS  Google Scholar 

  3. Goldin A, Noe HA, Landing BH, Shapiro DM, Goldberg B (1948) A neurological syndrome induced by administration of some chlorinated tertiary amines. J Pharmacol Exp Therap 94:249–261

    CAS  Google Scholar 

  4. Oliver WT, Roe CK (1957) Arsanilic acid poisoning in swine. J Am Vet Med Assoc 130:177–178

    CAS  PubMed  Google Scholar 

  5. Anniko M, Wersall J (1977) Experimentally (atoxyl) induced ampullar degeneration and damage to maculae-utriculi. Acta Otolaryngol 83:429–440

    Article  CAS  PubMed  Google Scholar 

  6. Hunt MA, Miller SW, Nielson HC, Horn KM (1987) Intratympanic injections of sodium arsanilate (atoxil) solution results in postural changes consistent with changes described for labyrinthectomized rats. Behav Neurosci 101:427–428

    Article  CAS  PubMed  Google Scholar 

  7. Ossenkopp KP, Prkacin A, Hargreaves EL (1990) Sodium arsanilate-induced vestibular dysfunction in rats: effects on open-field behavior and spontaneous activity in the automated digiscan monitoring system. Pharmacol Biochem Behav 36:875–881

    Article  CAS  PubMed  Google Scholar 

  8. Llorens J, Demêmes D, Sans A (1993) The behavioral syndrome caused by 3,3′-iminodipropionitrile and related nitriles in the rat is associated with degeneration of the vestibular sensory hair cells. Toxicol Appl Pharmacol 123:199–210

    Article  CAS  PubMed  Google Scholar 

  9. Llorens J, Rodríguez-Farré E (1997) Comparison of behavioral, vestibular, and axonal effects of subchronic IDPN in the rat. Neurotoxicol Teratol 19:117–127

    Article  CAS  PubMed  Google Scholar 

  10. Boadas-Vaello P, Riera J, Llorens J (2005) Behavioral and pathological effects in the rat define two groups of neurotoxic nitriles. Toxicol Sci 88:456–466

    Article  CAS  PubMed  Google Scholar 

  11. Soler-Martín C, Diez-Padrisa N, Boadas-Vaello P, Llorens J (2007) Behavioral disturbances and hair cell loss in the inner ear following nitrile exposure in mice, Guinea pigs, and frogs. Toxicol Sci 96:123–132

    Article  PubMed  Google Scholar 

  12. Boadas-Vaello P, Sedó-Cabezón L, Verdú E, Llorens J (2017) Strain and sex differences in the vestibular and systemic toxicity of 3,3′-iminodipropionitrile in mice. Toxicol Sci 156:109–122

    CAS  PubMed  Google Scholar 

  13. Selye H (1957) Lathyrism. Rev Can Biol 16:1–82

    CAS  PubMed  Google Scholar 

  14. Thuillier J, Burger A, Mouille P (1953) Contribution to the study of a motor syndrome induced in mice by amino-dipropionitrile (waltzing mice). C R Seances Soc Biol Fil 47:1052–1055

    Google Scholar 

  15. Rabbath G, Necchi D, de Waele C, Gasc JP, Josset P, Vidal PP (2001) Abnormal vestibular control of gaze and posture in a strain of a waltzing rat. Exp Brain Res 136:211–223

    Article  CAS  PubMed  Google Scholar 

  16. Sobin A, Anniko M (1986) Otoconial pathology in a strain of the waltzing Guinea pig. Am J Otol 7:449–453

    CAS  PubMed  Google Scholar 

  17. Demêmes D, Sans A (1985) Pathological-changes during the development of the vestibular sensory and ganglion-cells of the bronx waltzer mouse—scanning and transmission electron-microscopy. Dev Brain Res 18:285–295

    Article  Google Scholar 

  18. Wenngren BI, Anniko M (1989) Vestibular hair cell pathology in the dancer mouse mutant. Acta Otolaryngol 107:182–190

    Article  CAS  PubMed  Google Scholar 

  19. Anniko M, Sobin A, Wersäll J (1980) Vestibular hair cell pathology in the Shaker-2 mouse. Arch Otorhinolaryngol 226:45–50

    Article  CAS  PubMed  Google Scholar 

  20. Khan Z, Carey J, Park HJ, Lehar M, Lasker D, Jinnah HA (2004) Abnormal motor behavior and vestibular dysfunction in the stargazer mouse mutant. Neuroscience 127:785–796

    Article  CAS  PubMed  Google Scholar 

  21. Llorens J, Callejo A, Greguske EA, Maroto AF, Cutillas B, Martins-Lopes V (2018) Physiological assesment of vestibular function and toxicity in humans and animals. Neurotoxicology 66:204–212

    Article  PubMed  Google Scholar 

  22. Saldaña-Ruíz S, Boadas-Vaello P, Sedó-Cabezón L, Llorens J (2013) Reduced systemic toxicity and preserved vestibular toxicity following co-treatment with nitriles and CYP2E1 inhibitors: a mouse model for hair cell loss. J Assoc Res Otolaryngol 14:661–671

    Article  PubMed  PubMed Central  Google Scholar 

  23. Balbuena E, Llorens J (2001) Behavioural disturbances and sensory pathology following allylnitrile exposure in rats. Brain Res 904:298–306

    Article  CAS  PubMed  Google Scholar 

  24. Martins-Lopes V, Bellmunt A, Greguske EA, Maroto AF, Boadas-Vaello P, Llorens J (2019) Quantitative assessment of anti-gravity reflexes to evaluate vestibular dysfunction in rats. J Assoc Res Otolaryngol 20:553–563

    Article  PubMed  PubMed Central  Google Scholar 

  25. Maroto AF, Barrallo-Gimeno A, Llorens J. BioRxiv preprint. https://doi.org/10.1101/2020.12.21.423804

  26. Diamond BI, Reyes MG, Borison R (1982) A new animal model for Tourette syndrome. Adv Neurol 35:221–225

    CAS  PubMed  Google Scholar 

  27. Crofton KM, Knight T (1991) Auditory deficits and motor dysfunction following iminodipropionitrile administration in the rat. Neurotoxicol Teratol 13:575–581

    Article  CAS  PubMed  Google Scholar 

  28. Willis GL, Kennedy GA (2004) The implementation of acute versus chronic animal models for treatment discovery in Parkinson's disease. Rev Neurosci 15:75–87

    Article  PubMed  Google Scholar 

  29. Tanii H, Hayashi M, Hashimoto K (1989) Nitrile-induced behavioral abnormalities in mice. Neurotoxicology 10:157–166

    CAS  PubMed  Google Scholar 

  30. Tanii H, Kurosaka Y, Hayashi M, Hashimoto K (1989) Allylnitrile: a compound which induces long-term dyskinesia in mice following a single administration. Exp Neurol 103:64–67

    Article  CAS  PubMed  Google Scholar 

  31. Wilson VJ, Yoshida M (1968) Vestibulospinal and reticulospinal effects on hindlimb, forelimb, and neck alpha motoneurons of the cat. Proc Natl Acad Sci U S A 60:836–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Basaldella E, Takeoka A, Sigrist M, Arber S (2015) Multisensory signaling shapes vestibulo-motor circuit specificity. Cell 163:301–312

    Article  CAS  PubMed  Google Scholar 

  33. Pellis SM, Pellis VC, Teitelbaum P (1991) Labyrinthine and other supraspinal inhibitory controls over head-and-body ventroflexion. Behav Brain Res 46:99–102

    Article  CAS  PubMed  Google Scholar 

  34. Shoham S, Chen Y-C, Devietti TL, Teitelbaum P (1989) Deafferentation of the vestibular organ: effects on atropine-resistant EEG in rats. Psychobiology 17:307–314

    Article  Google Scholar 

  35. Pau H, Hawker K, Fuchs H, De Angelis MH, Steel KP (2004) Characterization of a new mouse mutant, flouncer, with a balance defect and inner ear malformation. Otol Neurotol 25:707–713

    Article  PubMed  Google Scholar 

  36. Sedó-Cabezón L, Jedynak P, Boadas-Vaello P, Llorens J (2015) Transient alteration of the vestibular calyceal junction and synapse in response to chronic ototoxic insult in rats. Dis Model Mech 8:1323–1337

    PubMed  PubMed Central  Google Scholar 

  37. Boadas-Vaello P, Jover E, Saldaña-Ruíz S, Soler-Martín C, Chabbert C, Bayona JM, Llorens J (2009) Allylnitrile metabolism by CYP2E1 and other CYPs leads to distinct lethal and vestibulotoxic effects in the mouse. Toxicol Sci 107:461–472

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants RTI2018-096452-B-I00 (Ministerio de Ciencia, Innovación y Universidades, Agencia Estatal de Investigación, Fondo Europeo de Desarrollo Regional, MCIU/AEI/FEDER, UE), and 2017 SGR 621 (Agència de Gestió d’Ajuts Universitaris i de Recerca, Generalitat de Catalunya). We thank former undergraduate and master students of the laboratory Sílvia Prades, Adrià Ricarte, Anna Bellmunt, and Vanessa Martins-Lopes for their contributions to the development of the tail-lift test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordi Llorens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Maroto, A.F., Greguske, E.A., Deulofeu, M., Boadas-Vaello, P., Llorens, J. (2021). Behavioral Assessment of Vestibular Dysfunction in Rats. In: Llorens, J., Barenys, M. (eds) Experimental Neurotoxicology Methods. Neuromethods, vol 172. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1637-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1637-6_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1636-9

  • Online ISBN: 978-1-0716-1637-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics