Skip to main content

Use of Visual Evoked Potentials to Assess Deficits in Contrast Sensitivity in Rats Following Neurotoxicant Exposures

  • Protocol
  • First Online:
Experimental Neurotoxicology Methods

Part of the book series: Neuromethods ((NM,volume 172))

  • 621 Accesses

Abstract

This chapter describes a procedure for recording pattern-elicited visual evoked potentials from experimental animals, focused primarily on pigmented rats. When recorded over a range of visual pattern contrast values, the results can be used to derive estimates of visual contrast threshold, contrast sensitivity, and contrast gain. Visual contrast is defined as the difference between the bright and dark regions of a visual pattern, adjusted for the overall luminance. Contrast encoding is an important feature of the neurological processes underlying spatial vision and is dependent on integrated processing within defined neurological circuits. This chapter describes procedures to measure contrast-related parameters that have been developed over years of experience and trial and error approaches. They involve electrophysiological recordings from visual cortex while animals view modulating visual patterns. The resulting evoked potentials are signal averaged, subjected to spectral analysis and interpreted relative to the contrast of the eliciting visual patterns. The resulting parameters include measurements of response amplitude, contrast threshold, contrast sensitivity, and contrast gain. The data from experimental animals are highly analogous to those from human subjects and have shown similar responsivity to neurotoxicant exposures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Herr DW, Boyes WK (1995) Chapter 9—Electrophysiological analysis of complex brain systems: sensory-evoked potentials and their generators. In: Chang LW, Slikker W (eds) Neurotoxicology. Academic Press, San Diego, pp 205–221. https://doi.org/10.1016/B978-012168055-8/50013-3

    Chapter  Google Scholar 

  2. Norcia AM, Appelbaum LG, Ales JM, Cottereau BR, Rossion B (2015) The steady-state visual evoked potential in vision research: a review. J Vis 15:4

    Article  PubMed  PubMed Central  Google Scholar 

  3. Regan DEDE (1989) Human brain electrophysiology : evoked potentials and evoked magnetic fields in science and medicine. Elsevier, New York

    Google Scholar 

  4. Kothari R, Bokariya P, Singh S, Singh R, Comprehensive A (2016) Review on methodologies employed for visual evoked potentials. Scientifica (Cairo) 2016:9852194

    PubMed  Google Scholar 

  5. Creel DJ (2019) Visually evoked potentials. Handb Clin Neurol 160:501–522

    Article  PubMed  Google Scholar 

  6. Tseng HC et al (2015) Visual impairment in an optineurin mouse model of primary open-angle glaucoma. Neurobiol Aging 36:2201–2212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Demyanenko GP et al (2011) NrCAM deletion causes topographic mistargeting of thalamocortical axons to the visual cortex and disrupts visual acuity. J Neurosci 31:1545–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Strain GM, Tedford BL, Gill MS (2006) Brainstem auditory evoked potentials and flash visual evoked potentials in Vietnamese miniature pot-bellied pigs. Res Vet Sci 80:91–95

    Article  PubMed  Google Scholar 

  9. Mitzdorf U (1987) Properties of the evoked potential generators: current source-density analysis of visually evoked potentials in the cat cortex. Int J Neurosci 33:33–59

    Article  CAS  PubMed  Google Scholar 

  10. Schroeder CE, Tenke CE, Givre SJ, Arezzo JC, Vaughan HG Jr (1991) Striate cortical contribution to the surface-recorded pattern-reversal VEP in the alert monkey. Vis Res 31:1143–1157

    Article  CAS  PubMed  Google Scholar 

  11. Boyes WK, Dyer RS (1983) Pattern reversal visual evoked potentials in awake rats. Brain Res Bull 10:817–823

    Article  CAS  PubMed  Google Scholar 

  12. Boyes WK (1994) Rat and human sensory evoked potentials and the predictability of human neurotoxicity from rat data. Neurotoxicology 15:569–578

    CAS  PubMed  Google Scholar 

  13. Birch D, Jacobs GH (1979) Spatial contrast sensitivity in albino and pigmented rats. Vis Res 19:933–937

    Article  CAS  PubMed  Google Scholar 

  14. Silveira LC, Heywood CA, Cowey A (1987) Contrast sensitivity and visual acuity of the pigmented rat determined electrophysiologically. Vis Res 27:1719–1731

    Article  CAS  PubMed  Google Scholar 

  15. Bobak P, Bodis-Wollner I, Marx MS (1988) Cortical contrast gain control in human spatial vision. J Physiol 405:421–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bonds AB (1991) Temporal dynamics of contrast gain in single cells of the cat striate cortex. Vis Neurosci 6:239–255

    Article  CAS  PubMed  Google Scholar 

  17. Boyes WK, Degn L, George BJ, Gilbert ME (2018) Moderate perinatal thyroid hormone insufficiency alters visual system function in adult rats. Neurotoxicology 67:73–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Boyes WK et al (2003) Dose-based duration adjustments for the effects of inhaled trichloroethylene on rat visual function. Toxicol Sci 76:121–130

    Article  CAS  PubMed  Google Scholar 

  19. Boyes WK et al (2014) Neurophysiological assessment of auditory, peripheral nerve, somatosensory, and visual system functions after developmental exposure to ethanol vapors. Neurotoxicol Teratol 43:1–10

    Article  CAS  PubMed  Google Scholar 

  20. Boyes WK et al (2005) Momentary brain concentration of trichloroethylene predicts the effects on rat visual function. Toxicol Sci 87:187–196

    Article  CAS  PubMed  Google Scholar 

  21. Boyes WK et al (2016) Toluene inhalation exposure for 13 weeks causes persistent changes in electroretinograms of long-Evans rats. Neurotoxicology 53:257–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Herr DW et al (2016) Neurophysiological assessment of auditory, peripheral nerve, somatosensory, and visual system function after developmental exposure to gasoline, E15, and E85 vapors. Neurotoxicol Teratol 54:78–88

    Article  CAS  PubMed  Google Scholar 

  23. Hamm CW, Ali JS, Herr DW (2000) A system for simultaneous multiple subject, multiple stimulus modality, and multiple channel collection and analysis of sensory evoked potentials. J Neurosci Methods 102:95–108

    Article  CAS  PubMed  Google Scholar 

  24. Bergland GD, Dolan MT (1979) Fast Fourier transform algorithms. In: Weinstein CJ (ed) Programs for digital signal processing. John Wiley & Sons, Inc, New York, pp 1.2-1–1.2-18

    Google Scholar 

  25. Tian L et al (2019) Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring. Nat Biomed Eng 3:194–205

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks David Herr, Jordi Llorens, and an anonymous reviewer for helpful comments on an earlier version of the manuscript. The author thanks Mary Gilbert for initiating the experiments depicted in Fig. 8. The author also thanks Garyn Jung for assistance and Chuck Gaul for photography in creating Fig. 4. The surgical and electrophysiological procedures were based on those originally developed by Robert S. Dyer with technical innovations by Mark Bercegeay.

This document has been subjected to review by the National Health and Environmental Effects Research Laboratory and approved for publication. Approval does not signify that the contents reflect the views of the Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William K. Boyes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Boyes, W.K. (2021). Use of Visual Evoked Potentials to Assess Deficits in Contrast Sensitivity in Rats Following Neurotoxicant Exposures. In: Llorens, J., Barenys, M. (eds) Experimental Neurotoxicology Methods. Neuromethods, vol 172. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1637-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1637-6_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1636-9

  • Online ISBN: 978-1-0716-1637-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics