Skip to main content

A Behavioral Test Battery to Assess Larval and Adult Zebrafish After Developmental Neurotoxic Exposure

  • Protocol
  • First Online:
Experimental Neurotoxicology Methods

Part of the book series: Neuromethods ((NM,volume 172))

Abstract

Behavioral test batteries are valuable methods which allow outcomes with varying characteristics and neurobiological bases to be assessed and compared in the same animals. This allows investigators to construct a profile of impairments produced by a pharmacological or toxicological challenge, and to propose mechanisms for further study based on those findings. This profile is valuable in the assessment of potentially hazardous substances, including environmental toxicants, drugs of abuse, and other neuropharmacologically active agents. Behavioral tests and batteries have been developed for a number of species, including a relatively recent and growing body of work with the zebrafish, Danio rerio. This chapter discusses the current zebrafish behavioral battery used in our laboratory, and some of the main factors that drove its development. The principal tests include a motility assay for larval fish (6 days post fertilization, dpf), and a battery intended for adolescent (2–3 months) and adult fish (5+ months), which assay sensorimotor, affective, and cognitive-like functions in these fish. Significant progress has been made in the areas of zebrafish neurobehavioral analysis, although further studies, refinements, and task development efforts will be needed to strengthen this approach in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kalueff AV, Stewart AM, Gerlai R (2014) Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci 35(2):63–75

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Noyes PD, Garcia GR, Tanguay RL (2016) Zebrafish as an in vivo model for sustainable chemical design. Green Chem 18(24):6410–6430

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Eimon PM, Rubinstein AL (2009) The use of in vivo zebrafish assays in drug toxicity screening. Expert Opin Drug Metab Toxicol 5(4):393–401

    CAS  PubMed  Google Scholar 

  4. Parng C, Roy NM, Ton C, Lin Y, McGrath P (2007) Neurotoxicity assessment using zebrafish. J Pharmacol Toxicol Methods 55(1):103–112

    CAS  PubMed  Google Scholar 

  5. Gilbert MJ, Zerulla TC, Tierney KB (2014) Zebrafish (Danio rerio) as a model for the study of aging and exercise: physical ability and trainability decrease with age. Exp Gerontol 50:106–113

    PubMed  Google Scholar 

  6. Ruhl T, Jonas A, Seidel NI, Prinz N, Albayram O, Bilkei-Gorzo A, von der Emde G (2016) Oxidation and cognitive impairment in the aging zebrafish. Gerontology 62(1):47–57

    CAS  Google Scholar 

  7. Hill AJ, Teraoka H, Heideman W, Peterson RE (2005) Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol Sci 86(1):6–19

    CAS  PubMed  Google Scholar 

  8. Barbazuk WB, Korf I, Kadavi C, Heyen J, Tate S, Wun E et al (2000) The syntenic relationship of the zebrafish and human genomes. Genome Res 10(9):1351–1358

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8(5):353–367

    CAS  PubMed  Google Scholar 

  10. Best JD, Alderton WK (2008) Zebrafish: an in vivo model for the study of neurological diseases. Neuropsychiatr Dis Treat 4(3):567–576

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Eddins D, Petro A, Williams P, Cerutti DT, Levin ED (2009) Nicotine effects on learning in zebrafish: the role of dopaminergic systems. Psychopharmacology 202:53–65

    Google Scholar 

  12. Hawkey AB, Glazer L, Dean C, Wells CN, Odamah KA, Slotkin TA, Seidler FJ, Levin ED (2020) Adult exposure to insecticides causes persistent behavioral and neurochemical alterations in zebrafish. Neurotoxicol Teratol 78:106853

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Mandrell D, Truong L, Jephson C, Sarker MR, Moore A, Lang C, Simonich MT, Tanguay RL (2012) Automated zebrafish chorion removal and single embryo placement: optimizing throughput of zebrafish developmental toxicity screens. J Lab Autom 17(1):66–74

    PubMed  PubMed Central  Google Scholar 

  14. Padilla S, Hunter DL, Padnos B, Frady S, MacPhail RC (2011) Assessing locomotor activity in larval zebrafish: influence of extrinsic and intrinsic variables. Neurotoxicol Teratol 33(6):624–630

    CAS  PubMed  Google Scholar 

  15. Gauthier PT, Vijayan MM (2018) Nonlinear mixed-modelling discriminates the effect of chemicals and their mixtures on zebrafish behavior. Sci Rep 8(1):1–11

    Google Scholar 

  16. Noyes PD, Haggard DE, Gonnerman GD, Tanguay RL (2015) Advanced morphological—behavioral test platform reveals neurodevelopmental defects in embryonic zebrafish exposed to comprehensive suite of halogenated and organophosphate flame retardants. Toxicol Sci 145(1):177–195

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Panlilio JM, Aluru N, Hahn ME (2019) Domoic acid disruption of neurodevelopment and behavior involves altered myelination in the spinal cord. BioRxiv. https://doi.org/10.1101/842294

  18. Glazer L, Hawkey AB, Wells CN, Drastal M, Odamah KA, Behl M, Levin ED (2018) Developmental exposure to low concentrations of organophosphate flame retardants causes life-long behavioral alterations in zebrafish. Toxicol Sci 165(2):487–498

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Cowden J, Padnos B, Hunter D, MacPhail R, Jensen K, Padilla S (2012) Developmental exposure to valproate and ethanol alters locomotor activity and retino-tectal projection area in zebrafish embryos. Reprod Toxicol 33(2):165–173

    CAS  PubMed  Google Scholar 

  20. Gauthier PT, Vijayan MM (2020) Municipal wastewater effluent exposure disrupts early development, larval behavior, and stress response in zebrafish. Environ Pollut 259:113757

    CAS  PubMed  Google Scholar 

  21. Knecht AL, Truong L, Simonich MT, Tanguay RL (2017) Developmental benzo [a] pyrene (B [a] P) exposure impacts larval behavior and impairs adult learning in zebrafish. Neurotoxicol Teratol 59:27–34

    CAS  PubMed  Google Scholar 

  22. Zeddies DG, Fay RR (2005) Development of the acoustically evoked behavioral response in zebrafish to pure tones. J Exp Biol 208(7):1363–1372

    PubMed  Google Scholar 

  23. Curzon P, Zhang M, Radek RJ, Fox GB (2009) The behavioral assessment of sensorimotor processes in the mouse: acoustic startle, sensory gating, locomotor activity, rotarod, and beam walking.

    Google Scholar 

  24. Eddins D, Cerutti D, Williams P, Linney E, Levin ED (2010) Zebrafish provide a sensitive model of persisting neurobehavioral effects of developmental chlorpyrifos exposure: comparison with nicotine and pilocarpine effects and relationship to dopamine deficits. Neurotoxicol Teratol 32(1):99–108

    CAS  PubMed  Google Scholar 

  25. Glazer L, Wells CN, Drastal M, Odamah KA, Galat RE, Behl M, Levin ED (2018) Developmental exposure to low concentrations of two brominated flame retardants, BDE-47 and BDE-99, causes life-long behavioral alterations in zebrafish. Neurotoxicology 66:221–232

    CAS  PubMed  Google Scholar 

  26. Kraeuter AK, Guest PC, Sarnyai Z (2019) The open field test for measuring locomotor activity and anxiety-like behavior. In: Guest P. (eds) Pre-Clinical Models. Methods in Molecular Biology, vol 1916. Humana Press, New York, NY, pp. 99–103

    Google Scholar 

  27. Levin ED, Bencan Z, Cerutti DT (2007) Anxiolytic effects of nicotine in zebrafish. Physiol Behav 90(1):54–58

    CAS  PubMed  Google Scholar 

  28. Bencan Z, Sledge D, Levin ED (2009) Buspirone, chlordiazepoxide and diazepam effects in a zebrafish model of anxiety. Pharmacol Biochem Behav 94(1):75–80

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Al-Jubouri Q, Al-Nuaimy W, Al-Taee MA, Young I (2017) Computer stereovision system for 3D tracking of free-swimming zebrafish

    Google Scholar 

  30. Macrì S, Neri D, Ruberto T, Mwaffo V, Butail S, Porfiri M (2017) Three-dimensional scoring of zebrafish behavior unveils biological phenomena hidden by two-dimensional analyses. Sci Rep 7(1):1–10

    Google Scholar 

  31. Miller NY, Gerlai R (2008) Oscillations in shoal cohesion in zebrafish (Danio rerio). Behav Brain Res 193(1):148–151

    PubMed  PubMed Central  Google Scholar 

  32. Al-Imari L, Gerlai R (2008) Sight of conspecifics as reward in associative learning in zebrafish (Danio rerio). Behav Brain Res 189(1):216–219

    PubMed  Google Scholar 

  33. Moretz JA, Martins EP, Robison BD (2007) The effects of early and adult social environment on zebrafish (Danio rerio) behavior. Environ Biol Fish 80(1):91–101

    Google Scholar 

  34. Peichel CL (2004) Social behavior: how do fish find their shoal mate? Curr Biol 14(13):R503–R504

    CAS  PubMed  Google Scholar 

  35. Saverino C, Gerlai R (2008) The social zebrafish: behavioral responses to conspecific, heterospecific, and computer animated fish. Behav Brain Res 191(1):77–87

    PubMed  PubMed Central  Google Scholar 

  36. Luca RM, Gerlai R (2012) In search of optimal fear inducing stimuli: differential behavioral responses to computer animated images in zebrafish. Behav Brain Res 226(1):66–76

    PubMed  Google Scholar 

  37. Bailey JM, Oliveri AN, Zhang C, Frazier JM, Mackinnon S, Cole GJ, Levin ED (2015) Long-term behavioral impairment following acute embryonic ethanol exposure in zebrafish. Neurotoxicol Teratol 48:1–8

    PubMed  PubMed Central  Google Scholar 

  38. Christian KM, Thompson RF (2003) Neural substrates of eyeblink conditioning: acquisition and retention. Learn Mem 10(6):427–455

    PubMed  Google Scholar 

  39. Whishaw IQ, Mittleman G, Bunch ST, Dunnett SB (1987) Impairments in the acquisition, retention and selection of spatial navigation strategies after medial caudate-putamen lesions in rats. Behav Brain Res 24(2):125–138

    CAS  PubMed  Google Scholar 

  40. Mathur P, Lau B, Guo S (2011) Conditioned place preference behavior in zebrafish. Nat Protoc 6(3):338–345

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gould GG (2011) Modified associative learning T-maze test for zebrafish (Danio rerio) and other small teleost fish. In A. Kalueff, & J. Cachat (Eds.), Zebrafish Neurobehavioral Protocols, pp. 61–73

    Google Scholar 

  42. Wong D, von Keyserlingk MA, Richards JG, Weary DM (2014) Conditioned place avoidance of zebrafish (Danio rerio) to three chemicals used for euthanasia and anaesthesia. PLoS One:9(2)

    Google Scholar 

  43. Brock AJ, Sudwarts A, Daggett J, Parker MO, Brennan CH (2017) A fully automated computer based Skinner box for testing learning and memory in zebrafish. bioRxiv. https://doi.org/10.1101/110478

  44. Delcourt J, Ovidio M, Denoël M, Muller M, Pendeville H, Deneubourg JL, Poncin P (2018) Individual identification and marking techniques for zebrafish. Rev Fish Biol Fish 28(4):839–864

    Google Scholar 

  45. Arthur D, Levin ED (2001) Spatial and non-spatial visual discrimination learning in zebrafish (Danio rerio). Anim Cogn 4:125–131

    Google Scholar 

  46. Levin ED, Chen E (2004) Nicotinic involvement in memory function in zebrafish. Neurotoxicol Teratol 26:731–735

    CAS  PubMed  Google Scholar 

  47. Sledge D, Yen J, Morton T, Dishaw L, Petro A, Donerly S, Linney E, Levin ED (2011) Critical duration of exposure for developmental chlorpyrifos-induced neurobehavioral toxicity. Neurotoxicol Teratol 33(6):742–751

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Cognato GDP, Bortolotto JW, Blazina AR, Christoff RR, Lara DR, Vianna MR, Bonan CD (2012) Y-maze memory task in zebrafish (Danio rerio): the role of glutamatergic and cholinergic systems on the acquisition and consolidation periods. Neurobiol Learn Mem 98(4):321–328

    CAS  PubMed  Google Scholar 

  49. Hawkey AB, Pippen E, White H, Kim J, Greengrove E, Kenou B, Holloway Z, Levin ED (2020) Gestational and perinatal exposure to diazinon causes long-lasting neurobehavioral consequences in the rat. Toxicology 429:152327

    CAS  PubMed  Google Scholar 

  50. Liew WC, Orbán L (2014) Zebrafish sex: a complicated affair. Brief Funct Genomics 13:172–187

    PubMed  Google Scholar 

  51. Santos D, Luzio A, Coimbra AM (2017) Zebrafish sex differentiation and gonad development: a review on the impact of environmental factors. Aquat Toxicol 191:141–163

    CAS  PubMed  Google Scholar 

  52. Segner H (2009) Zebrafish (Danio rerio) as a model organism for investigating endocrine disruption. Comp Biochem Physiol C 149(2):187–195

    Google Scholar 

  53. Kermen F, Franco LM, Wyatt C, Yaksi E (2013) Neural circuits mediating olfactory-driven behavior in fish. Front Neural Circuits 7:62

    PubMed  PubMed Central  Google Scholar 

  54. Cheng RK, Krishnan S, Lin Q, Hildebrand DG, Bianco IH, Kibat C, Jesuthasan S (2016) The thalamus is a gateway for stimulus-evoked activity in the habenula. bioRxiv. https://doi.org/10.1101/047936

  55. Perathoner S, Cordero-Maldonado ML, Crawford AD (2016) Potential of zebrafish as a model for exploring the role of the amygdala in emotional memory and motivational behavior. J Neurosci Res 94(6):445–462

    CAS  PubMed  Google Scholar 

  56. Cheng RK, Jesuthasan SJ, Penney TB (2014) Zebrafish forebrain and temporal conditioning. Philos Trans R Soc B 369(1637)

    Google Scholar 

  57. Mueller T, Dong Z, Berberoglu MA, Guo S (2011) The dorsal pallium in zebrafish, Danio rerio (Cyprinidae, Teleostei). Brain Res 1381:95–105

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Panula P, Sallinen V, Sundvik M, Kolehmainen J, Torkko V, Tiittula A, Moshnyakov M, Podlasz P (2006) Modulatory neurotransmitter systems and behavior: towards zebrafish models of neurodegenerative diseases. Zebrafish 3:235–247

    CAS  PubMed  Google Scholar 

  59. Santana S, Rico EP, Burgos JS (2012) Can zebrafish be used as animal model to study Alzheimer’s disease? Am J Neurodegener Dis 1(1):32–48

    PubMed  PubMed Central  Google Scholar 

  60. Levin ED, Sledge D, Roach S, Petro A, Donerly S, Linney E (2011) Persistent behavioral impairment caused by embryonic methylphenidate exposure in zebrafish. Neurotoxicol Teratol 33(6):668–673

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Crosby EB, Bailey JM, Oliveri AN, Levin ED (2015) Neurobehavioral impairments caused by developmental imidacloprid exposure in zebrafish. Neurotoxicol Teratol 49:81–90

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Oliveri AN, Levin ED (2019) Dopamine D1 and D2 receptor antagonism during development alters later behavior in zebrafish. Behav Brain Res 356:250–256

    CAS  PubMed  Google Scholar 

  63. Breen P, Winters AD, Nag D, Ahmad MM, Theis KR, Withey JH (2019) Internal versus external pressures: effect of housing systems on the zebrafish microbiome. Zebrafish 16(4):388–400

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Davis DJ, Bryda EC, Gillespie CH, Ericsson AC (2016) Microbial modulation of behavior and stress responses in zebrafish larvae. Behav Brain Res 311:219–227

    PubMed  PubMed Central  Google Scholar 

  65. Phelps D, Brinkman NE, Keely SP, Anneken EM, Catron TR, Betancourt D, Wood CE, Espenschied ST, Rawls JF, Tal T (2017) Microbial colonization is required for normal neurobehavioral development in zebrafish. Sci Rep 7(1):1–13

    CAS  Google Scholar 

  66. Russell RW (1992) Interactions among neurotransmitters: their importance to the “integrated organism”. In: Neurotransmitter interactions and cognitive function. Levin E.D., Decker M.W., Butcher L.L. (eds). Birkhäuser Boston Birkhäuser, Boston, pp 1–14

    Google Scholar 

  67. Bailey JM, Oliveri AN, Karbhari N, Brooks RA, Amberlene J, Janardhan S, Levin ED (2016) Persistent behavioral effects following early life exposure to retinoic acid or valproic acid in zebrafish. Neurotoxicology 52:23–33

    CAS  PubMed  Google Scholar 

  68. Oliveri AN, Bailey JM, Levin ED (2015) Developmental exposure to organophosphate flame retardants causes behavioral effects in larval and adult zebrafish. Neurotoxicol Teratol 52:220–227

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Levin ED, Chrysanthis E, Yacisin K, Linney E (2003) Chlorpyrifos exposure of developing zebrafish: effects on survival and long-term effects on response latency and spatial discrimination. Neurotoxicol Teratol 25(1):51–57

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This research and review was sponsored by the Duke University Superfund Center (ES010356).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward D. Levin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hawkey, A.B., Holloway, Z., Levin, E.D. (2021). A Behavioral Test Battery to Assess Larval and Adult Zebrafish After Developmental Neurotoxic Exposure. In: Llorens, J., Barenys, M. (eds) Experimental Neurotoxicology Methods. Neuromethods, vol 172. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1637-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1637-6_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1636-9

  • Online ISBN: 978-1-0716-1637-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics