Skip to main content

Assessing Neurotoxicant-Induced Inflammation in the Central Nervous System: Cytokine mRNA with Immunostaining of Microglia Morphology

  • Protocol
  • First Online:
Experimental Neurotoxicology Methods

Part of the book series: Neuromethods ((NM,volume 172))

  • 661 Accesses

Abstract

Inflammation occurs as a normal response of the organism to harmful stimuli such as microbial pathogens, irritants, or toxic cellular components that result from injury and trauma. It serves as a balanced process of pro- and anti-inflammatory responses to maintain normal tissue. The increased role of inflammation in the manifestation of neurotoxicity, whether directly induced or the result of pathological changes, has led to assessments of inflammatory factors within models of environmental exposures. Within the brain, an inflammatory response can be elicited from the resident central nervous system (CNS) glia (microglia and astrocytes) but can also be influenced by endothelial cells and peripherally derived immune cells depending on the nature of the insult, chemical-induced insults. There is a complex and dynamic response in the brain to regulate the inflammatory process. This chapter outlines methods to assess occurrence of a neuroinflammatory response with examination of mRNA levels for pro-inflammatory cytokines and receptors by qRT-PCR, combined with immunocytochemical staining for resident microglia immune cells and their morphological assessment. Analysis of the endpoints described in this chapter provides a framework to assess chemical-induced inflammation in the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Becher B, Spath S, Goverman J (2017) Cytokine networks in neuroinflammation. Nat Rev Immunol 17:49–59

    CAS  PubMed  Google Scholar 

  2. Kempuraj D, Thangavel R, Selvakumar GP et al (2017) Brain and peripheral atypical inflammatory mediators potentiate neuroinflammation and neurodegeneration. Front Cell Neurosci 11:216. https://doi.org/10.3389/fncel.2017.00216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Falvo JV, Tsytsykova AV, Goldfeld AE (2010) Transcriptional control of the TNF gene. Curr Dir Autoimmun 11:27–60

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Mazumder B, Li X, Barik S (2010) Translation control: a multifaceted regulator of inflammatory response. J Immunol 184(7):3311–3319

    CAS  PubMed  Google Scholar 

  5. Casanova JL, Abel L, Quintana-Murci L (2011) Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics. Annu Rev Immunol 29:447–491

    CAS  PubMed  Google Scholar 

  6. Rattenbacher B, Bohjanen PR (2012) Evaluating posttranscriptional regulation of cytokine genes. Methods Mol Biol 820:71–89

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Khabar KSA (2014) Post-transcriptional control of cytokine gene expression in health and disease. J Interf Cytokine Res 34(4):215–219

    CAS  Google Scholar 

  8. Mino T, Takeuchi O (2018) Post-transcriptional regulation of immune responses by RNA binding proteins. Proc Jpn Acad Ser B Phys Biol Sci 94(6):248–258

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kany S, Vollrath JT, Relja B (2019) Cytokines in inflammatory disease. Int J Mol Sci 20(23):6008. https://doi.org/10.3390/ijms20236008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brenner D, Blaser H, Mak T (2015) Regulation of tumour necrosis factor signalling: live or let die. Nat Rev Immunol 15:362–374

    CAS  PubMed  Google Scholar 

  11. Dinarello CA (2018) Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev 281(1):8–27

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Garlanda C, Riva F, Bonavita E et al (2013) Negative regulatory receptors of the IL-1 family. Semin Immunol 25(6):408–415

    CAS  PubMed  Google Scholar 

  13. Mrdjen D, Pavlovic A, Hartmann FJ et al (2018) High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48(2):380–395

    CAS  PubMed  Google Scholar 

  14. Norris GT, Kipnis J (2019) Immune cells and CNS physiology: microglia and beyond. J Exp Med 216(1):60–70

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Durafourt BA, Moore CS, Zammit DA et al (2012) Comparison of polarization properties of human adult microglia and blood-derived macrophages. Glia 60(5):717–727

    PubMed  Google Scholar 

  16. Yamasaki R, Lu H, Butovsky O et al (2014) Differential roles of microglia and monocytes in the inflamed central nervous system. J Exp Med 211:1533–1549

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173–185

    CAS  PubMed  Google Scholar 

  18. Muldoon LL, Alvarez JI, Begley DJ et al (2013) Immunologic privilege in the central nervous system and the blood-brain barrier. J Cereb Blood Flow Metab 33:13–21

    CAS  PubMed  Google Scholar 

  19. King IL, Dickendesher TL, Segal BM (2009) Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease. Blood 113:3190–3197

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Brendecke SM, Prinz M (2015) Do not judge a cell by its cover—diversity of CNS resident, adjoining and infiltrating myeloid cells in inflammation. Semin Immunopathol 37:591–605

    CAS  PubMed  Google Scholar 

  21. Michelucci A, Mittelbronn M, Gomez-Nicola D (2018) Microglia in health and disease: a unique immune cell population. Front Immunol 9:1779

    PubMed  PubMed Central  Google Scholar 

  22. Mittelbronn M, Dietz K, Schluesener HJ et al (2001) Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude. Acta Neuropathol 101(3):249–255

    CAS  PubMed  Google Scholar 

  23. Lawson LJ, Perry VH, Gordon S (1992) Turnover of resident microglia in the normal adult mouse brain. Neuroscience 48(2):405–415

    CAS  PubMed  Google Scholar 

  24. Alliot F, Godin I, Pessac B (1999) Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 117:145–152

    CAS  PubMed  Google Scholar 

  25. Gomez Perdiguero E, Klapproth K, Schultz C et al (2015) Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518:547–551

    PubMed  Google Scholar 

  26. Ajami B, Bennett JL, Krieger C et al (2011) Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci 14:1142–1149

    CAS  PubMed  Google Scholar 

  27. Mildner A, Schmidt H, Nitsche M et al (2007) Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 10:1544–1553

    CAS  PubMed  Google Scholar 

  28. Ginhoux F, Jung S (2014) Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 14:392–404

    CAS  PubMed  Google Scholar 

  29. Ginhoux F, Greter M, Leoeuf M et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ajami B, Bennett JL, Krieger C et al (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10:1538–1543

    CAS  PubMed  Google Scholar 

  31. Harry GJ, Kraft AD (2012) Microglia in the developing brain: a potential target with lifetime effects. Neurotoxicology 33:191–206

    PubMed  PubMed Central  Google Scholar 

  32. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    CAS  PubMed  Google Scholar 

  33. Kettenmann H, Hanisch UK, Noda M et al (2011) Physiology of microglia. Physiol Rev 91:461–553

    CAS  PubMed  Google Scholar 

  34. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    CAS  PubMed  Google Scholar 

  35. Kierdorf K, Prinz M (2013) Factors regulating microglia activation. Front Cell Neurosci 7:44

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Carson MJ, Reilly CR, Sutcliffe JG et al (1998) Mature microglia resemble immature antigen-presenting cells. Glia 22:72–85

    CAS  PubMed  Google Scholar 

  37. Lassmann H, Hickey WF (1993) Radiation bone marrow chimeras as a tool to study microglia turnover in normal brain and inflammation. Clin Neuropathol 12:284–285

    CAS  PubMed  Google Scholar 

  38. Gautier EL, Shaty T, Miller J et al (2012) Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol 13:1118–1128

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Larochelle A, Bellavance MA, Michaud JP, Rivest S (2016) Bone marrow-derived macrophages and the CNS: an update on the use of experimental chimeric mouse models and bone marrow transplantation in neurological disorders. Biochim Biophys Acta 1862(3):310–322

    CAS  PubMed  Google Scholar 

  40. Kono H, Rock KL (2008) How dying cells alert the immune system to danger. Nat Rev Immunol 8:279–289

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Pocock JM, Kettenmann H (2007) Neurotransmitter receptors on microglia. Trends Neurosci 30:527–535

    CAS  PubMed  Google Scholar 

  42. Crain JM, Nikodemova M, Watters JJ (2009) Expression of P2 nucleotide receptors varies with age and sex in murine brain microglia. J Neuroinflammation 6:24

    PubMed  PubMed Central  Google Scholar 

  43. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Martinez FO, Gordon S, Locati M et al (2006) Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177:7303–7311

    CAS  PubMed  Google Scholar 

  45. Murray PJ, Allen JE, Biswas SK et al (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41:14–20

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lopez-Atalaya JP, Askew KE, Sierra A et al (2018) Development and maintenance of the brain’s immune toolkit: microglia and non-parenchymal brain macrophages. Dev Neurobiol 78:561–579

    PubMed  Google Scholar 

  47. Hefendehl JK, Neher JJ, Suhs RB et al (2014) Homeostatic and injury-induced microglia behavior in the aging brain. Aging Cell 13:60–69

    CAS  PubMed  Google Scholar 

  48. Streit WJ, Miller KR, Lopez KO et al (2008) Microglial degeneration in the aging brain—bad news for neurons? Front Biosci 13:3423–3438

    CAS  PubMed  Google Scholar 

  49. Tremblay ME, Zette ML, Ison JR et al (2012) Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices. Glia 60:541–558

    PubMed  PubMed Central  Google Scholar 

  50. Damani MR, Zhao L, Fontainhas AM et al (2011) Age-related alterations in the dynamic behavior of microglia. Aging Cell 10:263–276

    CAS  PubMed  Google Scholar 

  51. Caput D, Beutler B, Hartog K et al (1986) Identification of a common nucleotide sequence in the 3′-untranslated region of mRNA molecules specifying inflammatory mediators. Proc Natl Acad Sci U S A 83:1670–1674

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  53. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    CAS  PubMed  Google Scholar 

  54. Davis BM, Salinas-Navarro M, Cordeiro MF et al (2017) Characterizing microglia activation: a spatial statistics approach to maximize information extraction. Sci Rep 7:1576

    PubMed  PubMed Central  Google Scholar 

  55. Paasila PJ, Davies DS, Kril JJ et al (2019) The relationship between the morphological subtypes of microglia and Alzheimer’s disease neuropathology. Brain Pathol 29:726–740

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Phoulady HA, Goldgof D, Hall LO, Mouton PR (2019) Automatic ground truth for deep learning stereology of immunostained neurons and microglia in mouse neocortex. J Chem Neuroanatomy 98:1–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Jean Harry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

McPherson, C.A., Harry, G.J. (2021). Assessing Neurotoxicant-Induced Inflammation in the Central Nervous System: Cytokine mRNA with Immunostaining of Microglia Morphology. In: Llorens, J., Barenys, M. (eds) Experimental Neurotoxicology Methods. Neuromethods, vol 172. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1637-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1637-6_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1636-9

  • Online ISBN: 978-1-0716-1637-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics