Skip to main content

Double-Strand RNA (dsRNA) Delivery Methods in Insects: Diaphorina citri

  • Protocol
  • First Online:
RNAi Strategies for Pest Management

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2360))

Abstract

RNAi is a gene-silencing mechanism conserved in the vast majority of eukaryotes. It is widely used to study gene function in animals due to the ease of eliciting gene knockdown. Beyond research applications, RNAi technology based on exogenous dsRNA is a promising candidate for next generation insect pest control. An advantage of using RNAi is that design of dsRNA essentially requires only the sequence of the target gene. The greatest challenge, however, is dsRNA delivery for large-scale insect control. Delivery methods that have widely been used are oral, injection, or via soaking. Unfortunately, each insect presents its own challenges owing to the differences in the presence of dsRNA degrading enzymes, cellular uptake efficiency, expression of core RNAi machinery, the nature of the target gene, the concentration and persistence of the dsRNA, as well as the particular way of feeding of each insect, which together cause variations in the efficiency of RNAi. In this chapter, a protocol for the synthetic production of dsRNA is described along with three methods for delivery that have been successful in one of the more problematic insects, Diaphorina citri.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Großhans H, Filipowicz W (2008) Molecular biology: the expanding world of small RNAs. Nature 451:414–416

    Article  PubMed  CAS  Google Scholar 

  3. Nandety RS, Kuo YW, Nouri S et al (2014) Emerging strategies for RNA interference (RNAI) applications in insects. Bioeng Bugs 6:8–19

    Google Scholar 

  4. Ben-Amar A, Daldoul S, Reustle G et al (2016) Reverse genetics and high throughput sequencing methodologies for plant functional genomics. Curr Genomics 17:460–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Suzuki T, Nunes MA, España MU et al (2017) RNAi-based reverse genetics in the chelicerate model Tetranychus urticae: a comparative analysis of five methods for gene silencing. PLoS One 12:1–22

    Article  Google Scholar 

  6. Elbashir S, Harborth J, Lendeckel W et al (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  CAS  PubMed  Google Scholar 

  7. Andrews OE, Cha DJ, Wei C et al (2014) RNAi-mediated gene silencing in zebrafish triggered by convergent transcription. Sci Rep 4:1–8

    Google Scholar 

  8. Conde J, Bao C, Tan Y et al (2015) Dual targeted immunotherapy via in vivo delivery of biohybrid RNAi-peptide nanoparticles to tumor-associated macrophages and cancer cells. Adv Funct Mater 25:4183–4194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Seyhan AA, Ryan TE (2010) RNAi screening for the discovery of novel modulators of human disease. Curr Pharm Biotechnol 11:735–756

    Article  CAS  PubMed  Google Scholar 

  10. Wolters NM, MacKeigan JP (2008) From sequence to function: using RNAi to elucidate mechanisms of human disease. Cell Death Differ 15:809–819

    Article  CAS  PubMed  Google Scholar 

  11. Ni Z, Lee SS (2010) RNAi screens to identify components of gene networks that modulate aging in Caenorhabditis elegans. Briefings Funct Genomics Proteomics 9:53–64

    Article  CAS  Google Scholar 

  12. Cherry S (2009) What have RNAi screens taught us about viral-host interactions? Curr Opin Microbiol 12(4):446–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kristen AV, Ajroud-Driss S, Conceição I et al (2019) Patisiran, an RNAi therapeutic for the treatment of hereditary transthyretin-mediated amyloidosis. Neurodegener Dis Manag 9:5–23

    Article  PubMed  Google Scholar 

  14. Boettcher M, McManus MT (2015) Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Mol Cell 58:575–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bolognesi R, Ramaseshadri P, Anderson J et al (2012) Characterizing the mechanism of action of double-stranded RNA activity against western corn rootworm (Diabrotica virgifera virgifera LeConte). PLoS One 7(10):1–11

    Article  CAS  Google Scholar 

  16. Head G, Campbell LA, Carroll M et al (2014) Movement and survival of corn rootworm in seed mixtures of SmartStax® insect-protected corn. Crop Prot 58:14–24

    Article  Google Scholar 

  17. Head GP, Carroll M, Evans S et al (2017) Evaluation of SmartStax and SmartStax PRO against WCR and NCR. Pest Manag Sci 73:1883–1899

    Article  CAS  PubMed  Google Scholar 

  18. Khajuria C, Ivashuta S, Wiggins E et al (2018) Development and characterization of the first dsRNA-resistant insect population from western corn rootworm, Diabrotica virgifera virgifera LeConte. PLoS One 13(5):1–19

    Article  CAS  Google Scholar 

  19. Epa US and Programs P (2017) US EPA, pesticide product label, MON 89034 X TC1507 X MON 87411 X DAS-59122-7, 06/08/2017

    Google Scholar 

  20. Zhu KY, Palli SR (2020) Mechanisms, applications, and challenges of insect RNA interference. Annu Rev Entomol 65:293–311

    Article  CAS  PubMed  Google Scholar 

  21. Bachman PM, Bolognesi R, Moar WJ et al (2013) Characterization of the spectrum of insecticidal activity of a double-stranded RNA with targeted activity against Western Corn Rootworm (Diabrotica virgifera virgifera LeConte). Transgenic Res 22:1207–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Christiaens O, Swevers L, Smagghe G (2014) DsRNA degradation in the pea aphid (Acyrthosiphon pisum) associated with lack of response in RNAi feeding and injection assay. Peptides 53:307–314

    Article  CAS  PubMed  Google Scholar 

  23. Christiaens O, Whyard S, Vélez AM et al (2020) Double-stranded RNA technology to control insect pests: current status and challenges. Front Plant Sci 11:1–10

    Article  Google Scholar 

  24. La Fauce K, Owens L (2012) RNA interference with special reference to combating viruses of crustacea. Indian J Virol 23:226–243

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ganbaatar O, Cao B, Zhang Y et al (2017) Knockdown of Mythimna separata chitinase genes via bacterial expression and oral delivery of RNAi effectors. BMC Biotechnol 17:1–11

    Article  CAS  Google Scholar 

  26. Zhang YL, Zhang SZ, Kulye M et al (2012) Silencing of molt-regulating transcription factor gene, CiHR3, affects growth and development of sugarcane stem borer, Chilo infuscatellus. J Insect Sci 12:1–12

    Google Scholar 

  27. Huvenne H, Smagghe G (2010) Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J Insect Physiol 56:227–235

    Article  CAS  PubMed  Google Scholar 

  28. Clemens JC, Worby CA, Simonson-Leff N et al (2000) Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc Natl Acad Sci U S A 97:6499–6503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Caplen NJ, Fleenor J, Fire A et al (2000) dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. Gene 252:95–105

    Article  CAS  PubMed  Google Scholar 

  30. Peng T, Pan Y, Yang C et al (2016) Over-expression of CYP6A2 is associated with spirotetramat resistance and cross-resistance in the resistant strain of Aphis gossypii Glover. Pestic Biochem Physiol 126:64–69

    Article  CAS  PubMed  Google Scholar 

  31. Shah C, Förstemann K (2008) Monitoring miRNA-mediated silencing in Drosophila melanogaster S2-cells. Biochim Biophys Acta Gene Regul Mech 1779:766–772

    Article  CAS  Google Scholar 

  32. Sivakumar S, Rajagopal R, Venkatesh GR et al (2007) Knockdown of aminopeptidase-N from Helicoverpa armigera larvae and in transfected Sf21 cells by RNA interference reveals its functional interaction with Bacillus thuringiensis insecticidal protein Cry1Ac. J Biol Chem 282:7312–7319

    Article  CAS  PubMed  Google Scholar 

  33. Valdes VJ, Sampieri A, Sepulveda J et al (2003) Using double-stranded RNA to prevent in vitro and in vivo viral infections by recombinant baculovirus. J Biol Chem 278:19317–19324

    Article  CAS  PubMed  Google Scholar 

  34. Johnson JA, Bitra K, Zhang S et al (2010) The UGA-CiE1 cell line from Chrysodeixis includens exhibits characteristics of granulocytes and is permissive to infection by two viruses. Insect Biochem Mol Biol 40:394–404

    Article  CAS  PubMed  Google Scholar 

  35. Terenius O, Papanicolaou A, Garbutt JS et al (2011) RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J Insect Physiol 57:231–245

    Article  CAS  PubMed  Google Scholar 

  36. Turner CT, Davy MW, MacDiarmid RM et al (2006) RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol Biol 15:383–391

    Article  CAS  PubMed  Google Scholar 

  37. Joga MR, Zotti MJ, Smagghe G et al (2016) RNAi efficiency, systemic properties, and novel delivery methods for pest insect control: what we know so far. Front Physiol 7:1–14

    Article  Google Scholar 

  38. Killiny N, Kishk A (2017) Delivery of dsRNA through topical feeding for RNA interference in the citrus sap piercing-sucking hemipteran, Diaphorina citri. Arch Insect Biochem Physiol 95:1–13

    Article  CAS  Google Scholar 

  39. Palli SR (2014) RNA interference in Colorado potato beetle: steps toward development of dsRNA as a commercial insecticide. Curr Opin Insect Sci 6:1–8

    Article  PubMed  PubMed Central  Google Scholar 

  40. Whyard S, Singh AD, Wong S (2009) Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochem Mol Biol 39:824–832

    Article  CAS  PubMed  Google Scholar 

  41. Baum JA, Bogaert T, Clinton W et al (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326

    Article  CAS  PubMed  Google Scholar 

  42. Niu X, Kassa A, Hu X et al (2017) Control of western corn rootworm (Diabrotica virgifera virgifera) reproduction through plant-mediated RNA interference. Sci Rep 7:1–13

    Article  CAS  Google Scholar 

  43. Zhu F, Xu J, Palli R et al (2011) Ingested RNA interference for managing the populations of the Colorado potato beetle, Leptinotarsa decemlineata. Pest Manag Sci 67:175–182

    Article  CAS  PubMed  Google Scholar 

  44. Zhao Y, Yang G, Wang-Pruski G et al (2008) Phyllotreta striolata (Coleoptera: Chrysomelidae): arginine kinase cloning and RNAi-based pest control. Eur J Entomol 105:815–822

    Article  CAS  Google Scholar 

  45. Coy MR, Sanscrainte ND, Chalaire KC et al (2012) Gene silencing in adult Aedes aegypti mosquitoes through oral delivery of double-stranded RNA. J Appl Entomol 136:741–748

    Article  CAS  Google Scholar 

  46. Singh AD, Wong S, Ryan CP et al (2013) Oral delivery of double-stranded RNA in larvae of the yellow fever mosquito, Aedes aegypti: implications for pest mosquito control. J Insect Sci 13:1–18

    Article  Google Scholar 

  47. Figueira-Mansur J, Ferreira-Pereira A, Mansur JF et al (2013) Silencing of P-glycoprotein increases mortality in temephos-treated Aedes aegypti larvae. Insect Mol Biol 22:648–658

    Article  CAS  PubMed  Google Scholar 

  48. Chen J, Zhang D, Yao Q et al (2010) Feeding-based RNA interference of a trehalose phosphate synthase gene in the brown planthopper, Nilaparvata lugens. Insect Mol Biol 19:777–786

    Article  CAS  PubMed  Google Scholar 

  49. Kumar A, Wang S, Ou R, Samrakandi M, Beerntsen BT, Sayre RT (2013) Development of an RNAi based microalgal larvicide to control mosquitoes. Malaria World J 4:7

    Google Scholar 

  50. Liu K, Tsujimoto H, Cha SJ et al (2011) Aquaporin water channel AgAQP1 in the malaria vector mosquito Anopheles gambiae during blood feeding and humidity adaptation. Proc Natl Acad Sci U S A 108:6062–6066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Walshe DP, Lehane SM, Lehane MJ et al (2009) Prolonged gene knockdown in the tsetse fly Glossina by feeding double stranded RNA. Insect Mol Biol 18:11–19

    Article  CAS  PubMed  Google Scholar 

  52. Shakesby AJ, Wallace IS, Isaacs HV et al (2009) A water-specific aquaporin involved in aphid osmoregulation. Insect Biochem Mol Biol 39:1–10

    Article  CAS  PubMed  Google Scholar 

  53. Christiaens O, Smagghe G (2014) The challenge of RNAi-mediated control of hemipterans. Curr Opin Insect Sci 6:15–21

    Article  PubMed  Google Scholar 

  54. Mao J, Zeng F (2014) Plant-mediated RNAi of a gap gene-enhanced tobacco tolerance against the Myzus persicae. Transgenic Res 23:145–152

    Article  CAS  PubMed  Google Scholar 

  55. Mutti NS, Park Y, Reese JC et al (2006) RNAi knockdown of a salivary transcript leading to lethality in the pea aphid, Acyrthosiphon pisum. J Insect Sci 6:3–9

    Article  Google Scholar 

  56. Sapountzis P, Duport G, Balmand S et al (2014) New insight into the RNA interference response against cathepsin-L gene in the pea aphid, Acyrthosiphon pisum: molting or gut phenotypes specifically induced by injection or feeding treatments. Insect Biochem Mol Biol 51:20–32

    Article  CAS  PubMed  Google Scholar 

  57. Will T, Vilcinskas A (2015) The structural sheath protein of aphids is required for phloem feeding. Insect Biochem Mol Biol 57:34–40

    Article  CAS  PubMed  Google Scholar 

  58. Yin C, Shen G, Guo D et al (2015) InsectBase: a resource for insect genomes and transcriptomes. Nucleic Acids Res 44:801–807

    Article  CAS  Google Scholar 

  59. Zhang Y, Lu Z (2015) Peroxiredoxin 1 protects the pea aphid Acyrthosiphon pisum from oxidative stress induced by Micrococcus luteus infection. J Invertebr Pathol 127:115–121

    Article  CAS  PubMed  Google Scholar 

  60. Naessens E, Dubreuil G, Giordanengo P et al (2015) A secreted MIF cytokine enables aphid feeding and represses plant immune responses. Curr Biol 25:1898–1903

    Article  CAS  PubMed  Google Scholar 

  61. Jaubert-Possamai S, Le Trionnaire G, Bonhomme J et al (2007) Gene knockdown by RNAi in the pea aphid Acyrthosiphon pisum. BMC Biotechnol 7:7–9

    Article  CAS  Google Scholar 

  62. Pitino M, Coleman AD, Maffei ME et al (2011) Silencing of aphid genes by dsRNA feeding from plants. PLoS One 6:1–8

    Article  CAS  Google Scholar 

  63. Gong YH, Yu XR, Shang QL et al (2014) Oral delivery mediated RNA interference of a carboxylesterase gene results in reduced resistance to organophosphorus insecticides in the cotton aphid, Aphis gossypii Glover. PLoS One 9:23–25

    Article  Google Scholar 

  64. Fan W, Wei Z, Zhang M et al (2015) Resistance to Ditylenchus destructor infection in sweet potato by the expression of small interfering RNAs targeting unc-15, a movement-related gene. Phytopathology 105:1458–1465

    Article  CAS  PubMed  Google Scholar 

  65. Rebijith KB, Asokan R, Hande HR et al (2016) RNA interference of odorant-binding protein 2 (OBP2) of the cotton aphid, Aphis gossypii (Glover), resulted in altered electrophysiological responses. Appl Biochem Biotechnol 178:251–266

    Article  CAS  PubMed  Google Scholar 

  66. Wuriyanghan H, Rosa C, Falk BW (2011) Oral delivery of double-stranded RNAs and siRNAs induces RNAi effects in the potato/tomato psyllid, Bactericerca cockerelli. PLoS One 6(11):e27736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Upadhyay SK, Chandrashekar K, Thakur N et al (2011) RNA interference for the control of whiteflies (Bemisia tabaci) by oral route. J Biosci 36:153–161

    Article  CAS  PubMed  Google Scholar 

  68. Thakur N, Upadhyay SK, Verma PC et al (2014) Enhanced whitefly resistance in transgenic tobacco plants expressing double stranded RNA of v-ATPase a gene. PLoS One 9:1–9

    Article  CAS  Google Scholar 

  69. Malik HJ, Raza A, Amin I et al (2016) RNAi-mediated mortality of the whitefly through transgenic expression of double-stranded RNA homologous to acetylcholinesterase and ecdysone receptor in tobacco plants. Sci Rep 6:1–11

    Article  CAS  Google Scholar 

  70. Li X, Zhang M, Zhang H (2011) RNA interference of four genes in adult Bactrocera dorsalis by feeding their dsRNAs. PLoS One 6(3):e17788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Deng F, Zhao Z (2014) Influence of catalase gene silencing on the survivability of sitobion avenae. Arch Insect Biochem Physiol 86:46–57

    CAS  PubMed  Google Scholar 

  72. Xiao D, Lu YH, Shang QL et al (2015) Gene silencing of two acetylcholinesterases reveals their cholinergic and non-cholinergic functions in Rhopalosiphum padi and Sitobion avenae. Pest Manag Sci 71:523–530

    Article  CAS  PubMed  Google Scholar 

  73. Zhang X, Liu X, Ma J et al (2013) Silencing of cytochrome P450 CYP6B6 gene of cotton bollworm (Helicoverpa armigera) by RNAi. Bull Entomol Res 103:584–591

    Article  CAS  PubMed  Google Scholar 

  74. Wang W, Luo L, Lu H et al (2015) Angiotensin-converting enzymes modulate aphid-plant interactions. Sci Rep 5

    Google Scholar 

  75. Fan J, Zhang Y, Francis F et al (2015) Orco mediates olfactory behaviors and winged morph differentiation induced by alarm pheromone in the grain aphid, Sitobion avenae. Insect Biochem Mol Biol 64:16–24

    Article  CAS  PubMed  Google Scholar 

  76. Zhang J, Khan AS, Hasse C et al (2015) Pest control. Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. Science 27:991–994

    Article  CAS  Google Scholar 

  77. Yao J, Rotenberg D, Afsharifar A et al (2013) Development of RNAi methods for Peregrinus maidis, the Corn Planthopper. PLoS One 8(8):e70243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Araujo RN, Santos A, Pinto FS et al (2006) RNA interference of the salivary gland nitrophorin 2 in the triatomine bug Rhodnius prolixus (Hemiptera: Reduviidae) by dsRNA ingestion or injection. Insect Biochem Mol Biol 36:683–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Allen ML, Walker WB (2012) Saliva of Lygus lineolaris digests double stranded ribonucleic acids. J Insect Physiol 58:391–396

    Article  CAS  PubMed  Google Scholar 

  80. El-Shesheny I, Hajeri S, El-Hawary I et al (2013) Silencing abnormal wing disc gene of the Asian citrus psyllid, Diaphorina citri disrupts adult wing development and increases nymph mortality. PLoS One 8:2–9

    Article  CAS  Google Scholar 

  81. Yu X, Gowda S, Killiny N (2017) Double-stranded RNA delivery through soaking mediates silencing of the muscle protein 20 and increases mortality to the Asian citrus psyllid, Diaphorina citri. Pest Manag Sci 73:1846–1853

    Article  CAS  PubMed  Google Scholar 

  82. Kishk A, Anber HAI, AbdEl-Raof TK et al (2017) RNA interference of carboxyesterases causes nymph mortality in the Asian citrus psyllid, Diaphorina citri. Arch Insect Biochem Physiol 94:1–13

    Article  CAS  Google Scholar 

  83. Hijaz F, Killiny N (2014) Collection and chemical composition of phloem sap from Citrus sinensis L. Osbeck (sweet orange). PLoS One 9:1–11

    Article  Google Scholar 

  84. Santos-Ortega Y, Killiny N (2018) Silencing of sucrose hydrolase causes nymph mortality and disturbs adult osmotic homeostasis in Diaphorina citri (Hemiptera: Liviidae). Insect Biochem Mol Biol 101:131–143

    Article  CAS  PubMed  Google Scholar 

  85. Yu X, Killiny N (2018) Effect of silencing a boule homologue on the survival and reproduction of Asian citrus psyllid Diaphorina citri. Physiol Entomol 43:268–275

    Article  CAS  Google Scholar 

  86. Yu X, Killiny N (2018) Effect of parental RNA interference of a transformer-2 homologue on female reproduction and offspring sex determination in Asian citrus psyllid. Physiol Entomol 43:42–50

    Article  CAS  Google Scholar 

  87. Yu X, Killiny N (2018) RNA interference of two glutathione S-transferase genes, Diaphorina citri DcGSTe2 and DcGSTd1, increases the susceptibility of Asian citrus psyllid (Hemiptera: Liviidae) to the pesticides fenpropathrin and thiamethoxam. Pest Manag Sci 74:638–647

    Article  CAS  PubMed  Google Scholar 

  88. Nunes FMF, Simões ZLP (2009) A non-invasive method for silencing gene transcription in honeybees maintained under natural conditions. Insect Biochem Mol Biol 39:157–160

    Article  CAS  PubMed  Google Scholar 

  89. Meer V (2012) (12) Patent application publication (10) Pub. No.: US 2012/0148524 A1. 1

    Google Scholar 

  90. Vander MK, Choi MY (2011) Formicidae (Ant) control using double-stranded RNA constructs. US patent no 8,575,328

    Google Scholar 

  91. Zhou X, Wheeler MM, Oi FM et al (2008) RNA interference in the termite Reticulitermes flavipes through ingestion of double-stranded RNA. Insect Biochem Mol Biol 38:805–815

    Article  CAS  PubMed  Google Scholar 

  92. Zhang H, Li HC, Miao XX (2013) Feasibility, limitation and possible solutions of RNAi-based technology for insect pest control. Insect Sci 20:15–30

    Article  PubMed  CAS  Google Scholar 

  93. Kumar M, Gupta GP, Rajam MV (2009) Silencing of acetylcholinesterase gene of Helicoverpa armigera by siRNA affects larval growth and its life cycle. J Insect Physiol 55:273–278

    Article  CAS  PubMed  Google Scholar 

  94. Zhu JQ, Liu S, Ma Y et al (2012) Improvement of pest resistance in transgenic tobacco plants expressing dsRNA of an insect-associated gene EcR. PLoS One 7(6):e38572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Xiong Y, Zeng H, Zhang Y et al (2013) Silencing the HaHR3 gene by transgenic plant-mediated RNAi to disrupt Helicoverpa armigera development. Int J Biol Sci 9:370–381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Mao YB, Cai WJ, Wang JW et al (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313

    Article  CAS  PubMed  Google Scholar 

  97. Yang J, Han Z-j (2014) Efficiency of different methods for dsRNA delivery in cotton bollworm (Helicoverpa armigera). J Integr Agric 13:115–123

    Article  CAS  Google Scholar 

  98. Khajuria C, Buschman L, Chen M et al (2010) A gut-specific chitinase gene essential for regulation of chitin content of peritrophic matrix and growth of Ostrinia nubilalis larvae. Insect Biochem Mol Biol 40:621–629

    Article  CAS  PubMed  Google Scholar 

  99. Bautista MAM, Miyata T, Miura K et al (2009) RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin. Insect Biochem Mol Biol 39:38–46

    Article  CAS  PubMed  Google Scholar 

  100. Gong L, Yang X, Zhang B et al (2011) Silencing of Rieske iron-sulfur protein using chemically synthesised siRNA as a potential biopesticide against Plutella xylostella. Pest Manag Sci 67:514–520

    Article  CAS  PubMed  Google Scholar 

  101. Gong L, Chen Y, Hu Z et al (2013) Testing insecticidal activity of novel chemically synthesized siRNA against Plutella xylostella under laboratory and field conditions. PLoS One 8:1–8

    Google Scholar 

  102. Kontogiannatos D, Swevers L, Maenaka K et al (2013) Functional characterization of a juvenile hormone esterase related gene in the moth Sesamia nonagrioides through RNA interference. PLoS One 8(9):e73834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tian H, Peng H, Yao Q et al (2009) Developmental control of a lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a non-midgut gene. PLoS One 4(7):e6225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Surakasi VP, Mohamed AAM, Kim Y (2011) RNA interference of β1 integrin subunit impairs development and immune responses of the beet armyworm, Spodoptera exigua. J Insect Physiol 57:1537–1544

    Article  CAS  PubMed  Google Scholar 

  105. Rajagopal R, Sivakumar S, Agrawal N et al (2002) Silencing of midgut aminopeptidase N of Spodoptera litura by double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor. J Biol Chem 277:46849–46851

    Article  CAS  PubMed  Google Scholar 

  106. Tian L, Ma L, Guo E et al (2013) 20-hydroxyecdysone upregulates Atg genes to induce autophagy in the Bombyx fat body. Autophagy 9:1172–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Huang J, Zhang Y, Li M et al (2007) RNA interference-mediated silencing of the bursicon gene induces defects in wing expansion of silkworm. FEBS Lett 581:697–701

    Article  CAS  PubMed  Google Scholar 

  108. Griebler M, Westerlund SA, Hoffmann KH et al (2008) RNA interference with the allatoregulating neuropeptide genes from the fall armyworm Spodoptera frugiperda and its effects on the JH titer in the hemolymph. J Insect Physiol 54:997–1007

    Article  CAS  PubMed  Google Scholar 

  109. Rodríguez-Cabrera L, Trujillo-Bacallao D, Borrás-Hidalgo O et al (2010) RNAi-mediated knockdown of a Spodoptera frugiperda trypsin-like serine-protease gene reduces susceptibility to a Bacillus thuringiensis Cry1Ca1 protoxin. Environ Microbiol 12:2894–2903

    Article  PubMed  CAS  Google Scholar 

  110. Meyering-Vos M, Müller A (2007) RNA interference suggests sulfakinins as satiety effectors in the cricket Gryllus bimaculatus. J Insect Physiol 53:840–848

    Article  CAS  PubMed  Google Scholar 

  111. Luo Y, Wang X, Wang X et al (2013) Differential responses of migratory locusts to systemic RNA interference via double-stranded RNA injection and feeding. Insect Mol Biol 22:574–583

    Article  CAS  PubMed  Google Scholar 

  112. Wynant N, Verlinden H, Breugelmans B et al (2012) Tissue-dependence and sensitivity of the systemic RNA interference response in the desert locust, Schistocerca gregaria. Insect Biochem Mol Biol 42:911–917

    Article  CAS  PubMed  Google Scholar 

  113. Jain PK, Bhattachary R, Kohli D, Aminedi R, Argrawal PK (2018) RNAi for resistence against biotic stresses in crop plants. In: Gosal S, Wani S (eds) Biotechnologies of crop improvement, vol 2. Springer, Cham, pp 67–112. https://doi.org/10.1007/978-3-319-90650-8_4

  114. Lu Y, Park Y, Gao X et al (2012) Cholinergic and non-cholinergic functions of two acetylcholinesterase genes revealed by gene-silencing in Tribolium castaneum. Sci Rep 2:1–7

    Article  Google Scholar 

  115. Tomoyasu Y, Miller SC, Tomita S et al (2008) Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biol 9:1–22

    Article  CAS  Google Scholar 

  116. Yin C, Shen G, Guo D et al (2016) InsectBase: a resource for insect genomes and transcriptomes. Nucleic Acids Res 44:801–807

    Article  CAS  Google Scholar 

  117. Zhang T, Liu W, Li D et al (2018) LmCht5-1 promotes pro-nymphal molting during locust embryonic development. Insect Biochem Mol Biol 101:124–130

    Article  CAS  PubMed  Google Scholar 

  118. Li Z, Zeng B, Ling L et al (2015) Enhancement of larval RNAi efficiency by over-expressing argonaute2 in bombyx mori. Int J Biol Sci 11:176–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Martín D, Maestro O, Cruz J et al (2006) RNAi studies reveal a conserved role for RXR in molting in the cockroach Blattella germanica. J Insect Physiol 52:410–416

    Article  PubMed  CAS  Google Scholar 

  120. Asokan R, Sharath Chandra G, Manamohan M et al (2014) Response of various target genes to diet-delivered dsRNA mediated RNA interference in the cotton bollworm, Helicoverpa armigera. J Pest Sci 87:163–172

    Article  Google Scholar 

  121. Lü J, Liu Z, Guo W et al (2021) Oral delivery of ds Hvlwr is a feasible method for managing the pest Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae). Insect Sci 28(2):509–520. https://doi.org/10.1111/1744-7917.12784

    Article  CAS  PubMed  Google Scholar 

  122. Luo Y, Chen Q, Luan J et al (2017) Towards an understanding of the molecular basis of effective RNAi against a global insect pest, the whitefly Bemisia tabaci. Insect Biochem Mol Biol 88:21–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tabara H, Grishok A, Mello CC (1998) The Genome Sequence T. Science 282:430–431

    Article  CAS  PubMed  Google Scholar 

  124. Maeda I, Kohara Y, Yamamoto M et al (2001) Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Curr Biol 11:171–176

    Article  CAS  PubMed  Google Scholar 

  125. Wang Y, Zhang H, Li H et al (2011) Second-generation sequencing supply an effective way to screen RNAi targets in large scale for potential application in pest insect control. PLoS One 6(4):1–10

    Google Scholar 

  126. Zotti M, dos Santos EA, Cagliari D et al (2018) RNA interference technology in crop protection against arthropod pests, pathogens and nematodes. Pest Manag Sci 74(6):1239–1250

    Article  CAS  PubMed  Google Scholar 

  127. Parsons KH, Mondal MH, McCormick CL et al (2018) Guanidinium-functionalized interpolyelectrolyte complexes enabling RNAi in resistant insect pests. Biomacromolecules 19:1111–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zheng Y, Hu Y, Yan S et al (2019) A polymer/detergent formulation improves dsRNA penetration through the body wall and RNAi-induced mortality in the soybean aphid Aphis glycines. Pest Manag Sci 75:1993–1999

    Article  CAS  PubMed  Google Scholar 

  129. Natarajan P, Sukthankar P, Changstrom J et al (2018) Synthesis and characterization of multifunctional branched amphiphilic peptide bilayer conjugated gold nanoparticles. ACS Omega 3:11071–11083

    Article  CAS  Google Scholar 

  130. Grafton-Cardwell EE, Stelinski LL, Stansly PA (2013) Biology and management of Asian citrus psyllid, vector of the huanglongbing pathogens. Annu Rev Entomol 58:413–432

    Article  CAS  PubMed  Google Scholar 

  131. Boina DR, Bloomquist JR (2015) Chemical control of the Asian citrus psyllid and of huanglongbing disease in citrus. Pest Manag Sci 71:808–823

    Article  CAS  PubMed  Google Scholar 

  132. Tabachnick WJ (2015) Diaphorina citri (Hemiptera: Liviidae) vector competence for the Citrus Greening Pathogen “Candidatus Liberibacter Asiaticus.”. J Econ Entomol 108:839–848

    Article  PubMed  Google Scholar 

  133. Taning CNT, Andrade EC, Hunter WB et al (2016) Asian citrus psyllid RNAi pathway-RNAi evidence. Sci Rep 6:1–10

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Graphic designer Cuauhtémoc Moises Hernandez Castelán for his help with the graphics. Y.S.O. and A.S.F. are supported by NSF MCB 1845978.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Flynt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Santos-Ortega, Y., Flynt, A. (2022). Double-Strand RNA (dsRNA) Delivery Methods in Insects: Diaphorina citri. In: Vaschetto, L.M. (eds) RNAi Strategies for Pest Management. Methods in Molecular Biology, vol 2360. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1633-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1633-8_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1632-1

  • Online ISBN: 978-1-0716-1633-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics