Skip to main content

Universal Sample Preparation Workflow for Plant Phosphoproteomic Profiling

  • Protocol
  • First Online:
Plant Phosphoproteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2358))

Abstract

Mass spectrometry (MS)-based phosphoproteomics is a powerful tool for investigating cell signaling, yet it remains challenging to study plant phosphoproteomes due to the low yield of cell lysis and high complexity of plant lysate. Here we report a streamlined sample preparation workflow to analyze plant phosphoproteomes in a high-throughput manner. This workflow addresses the problem of low yield in the lysis step and eliminates the interferences of pigments and metabolites in plant lysate. Integrating chemical labeling and high pH reverse phase fractionation with this workflow achieves in-depth phosphoproteomic coverage. Notably, the scalability of this approach is demonstrated by systematically analyzing the effect of long-term cold stress in the perturbation of the tomato phosphoproteome. Identification of more than 30,000 phosphopeptides from tomato leaves and more than 5000 kinase-substrate pairs from Arabidopsis create the largest phosphoproteomic and signaling network resource to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhao C, Wang P, Si T et al (2017) MAP kinase cascades regulate the cold response by modulating ICE1 protein stability. Dev Cell 43(5):618–629

    Article  CAS  Google Scholar 

  2. Wang P, Zhao Y, Li Z et al (2018) Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response. Mol Cell 69(1):100–112

    Article  CAS  Google Scholar 

  3. Lin Z, Li Y, Zhang Z et al (2020) A RAF-SnRK2 kinase cascade mediates early osmotic stress signaling in higher plants. Nat Commun 11(1):613. https://doi.org/10.1038/s41467-020-14477-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang P, Xue L, Batelli G et al (2013) Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proc Natl Acad Sci U S A 110(27):11205–11210

    Article  CAS  Google Scholar 

  5. Umezawa T, Takahashi F, Shinozaki K (2014) Phosphorylation networks in the abscisic acid signaling pathway. Enzyme 35:27–56

    Article  CAS  Google Scholar 

  6. Sugiyama N, Masuda T, Shinoda K et al (2007) Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Mol Cell Proteomics 6(6):1103–1109

    Article  CAS  Google Scholar 

  7. Tsai CF, Hsu CC, Hung JN et al (2014) Sequential phosphoproteomic enrichment through complementary metal-directed immobilized metal ion affinity chromatography. Anal Chem 86(1):685–693

    Article  CAS  Google Scholar 

  8. Hsu C-C, Zhu Y, Arrington JV et al (2018) Universal plant phosphoproteomics workflow and its application to tomato signaling in response to cold stress. Mol Cell Proteomics 17(10):2068–2080

    Article  CAS  Google Scholar 

  9. Masuda T, Sugiyama N, Tomita M et al (2011) Microscale phosphoproteome analysis of 10,000 cells from human cancer cell lines. Anal Chem 83(20):7698–7703

    Article  CAS  Google Scholar 

  10. Boersema PJ, Raijmakers R, Lemeer S et al (2009) Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 4(4):484–494

    Article  CAS  Google Scholar 

  11. Iliuk AB, Martin VA, Alicie BM et al (2010) In-depth analyses of kinase-dependent tyrosine phosphoproteomes based on metal ion-functionalized soluble nanopolymers. Mol Cell Proteomics 9(10):2162–2172

    Article  CAS  Google Scholar 

  12. Dimayacyac-Esleta BR, Tsai CF, Kitata RB et al (2015) Rapid high-pH reverse phase StageTip for sensitive small-scale membrane proteomic profiling. Anal Chem 87(24):12016–12023

    Article  CAS  Google Scholar 

  13. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2(8):1896–1906

    Article  CAS  Google Scholar 

  14. Wang P, Hsu CC, Du Y et al (2020) Mapping proteome-wide targets of protein kinases in plant stress responses. Proc Natl Acad Sci U S A 117(6):3270–3280

    Article  CAS  Google Scholar 

  15. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  CAS  Google Scholar 

  16. Tyanova S, Temu T, Sinitcyn P et al (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13:731–740

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support of this work from the NSF (grant 1506752).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Andy Tao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hsu, CC., Arrington, J.V., Tao, W.A. (2021). Universal Sample Preparation Workflow for Plant Phosphoproteomic Profiling. In: Wu, X.N. (eds) Plant Phosphoproteomics. Methods in Molecular Biology, vol 2358. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1625-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1625-3_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1624-6

  • Online ISBN: 978-1-0716-1625-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics