Skip to main content

Single Transcription Factor-Based Differentiation Allowing Fast and Efficient Oligodendrocyte Generation via SOX10 Overexpression

  • Protocol
  • First Online:
Neural Reprogramming

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2352))

Abstract

Oligodendrocytes are the main glial cell type in the central nervous system supporting the axonal part of neurons via myelin and lactate delivery. Both the conductive myelin formation and the energy support via lactate can be affected in diseases, such as multiple sclerosis and amyotrophic lateral sclerosis, respectively. Therefore, human disease modeling is needed to gain more mechanistic insights to drive drug discovery research. Here, patient-derived induced pluripotent stem cells (iPSCs) serve as a necessary tool providing an infinite cell source for patient-specific disease modeling, which allows investigation of oligodendrocyte involvement in human disease.

Small molecule-based differentiation protocols to generate oligodendrocytes from pluripotent stem cells can last more than 90 days. Here, we provide a transcription factor-based, fast and efficient protocol for generating O4+ oligodendrocytes in just 20–24 days. After a neural induction phase of 8–12 days, SOX10 is overexpressed either with the use of lentiviral vectors or via engineered iPSCs, which inducibly overexpress SOX10 after doxycycline addition. Using this last method, a pure O4+ cell population is achieved after keeping the SOX10-overexpressing neural stem cells in culture for an additional 10 days. Furthermore, these O4+ cells can be co-cultured with iPSC-derived cortical neurons in 384-well format, allowing pro-myelinating drug screens. In conclusion, we provide a fast and efficient oligodendrocyte differentiation protocol allowing both in vitro human disease modeling and a high-throughput co-culture system for drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trapp BD, Nave K (2008) Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 31:247–269

    Article  CAS  Google Scholar 

  2. Philips T, Rothstein JD (2017) Oligodendroglia: metabolic supporters of neurons. J Clin Invest 127(9):3271–3280

    Article  Google Scholar 

  3. Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN et al (2012) Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487(7408):443–448

    Article  CAS  Google Scholar 

  4. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  Google Scholar 

  5. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27(3):275–280

    Article  CAS  Google Scholar 

  6. Goldman SA, Kuypers NJ (2015) How to make an oligodendrocyte. Development 142(23):3983–3995

    Article  CAS  Google Scholar 

  7. Gaspard N, Vanderhaeghen P (2010) Mechanisms of neural specification from embryonic stem cells. Curr Opin Neurobiol 20(1):37–43

    Article  CAS  Google Scholar 

  8. Wang S, Bates J, Li X, Schanz S, Chandler-militello D, Levine C et al (2013) Clinical progress progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Stem Cell 12(2):252–264

    CAS  Google Scholar 

  9. Livesey MR, Magnani D, Cleary EM, Vasistha NA, James OT, Selvaraj BT et al (2016) Maturation and electrophysiological properties of human pluripotent stem cell-derived oligodendrocytes. Stem Cells 34(4):1040–1053

    Article  CAS  Google Scholar 

  10. Douvaras P, Wang J, Zimmer M, Hanchuk S, O’Bara MA, Sadiq S et al (2014) Efficient generation of myelinating oligodendrocytes from primary progressive multiple sclerosis patients by induced pluripotent stem cells. Stem Cell Reports 3(2):250–259

    Article  CAS  Google Scholar 

  11. Ehrlich M, Mozafari S, Glatza M, Starost L, Velychko S, Hallmann A-L et al (2017) Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors. Proc Natl Acad Sci 114(11):E2243–E2252

    Article  CAS  Google Scholar 

  12. García-León JA, Kumar M, Boon R, Chau D, One J, Wolfs E et al (2018) SOX10 single transcription factor-based fast and efficient generation of oligodendrocytes from human pluripotent stem cells. Stem Cell Reports 10(2):655–672

    Article  Google Scholar 

  13. Ordovás L, Boon R, Pistoni M, Chen Y, Wolfs E, Guo W et al (2015) Efficient recombinase-mediated cassette exchange in hPSCs to study the hepatocyte lineage reveals AAVS1 locus-mediated transgene inhibition. Stem Cell Reports 5(5):918–931

    Article  Google Scholar 

  14. Marti E, Bumcrot DA, Takada R, Mcmahon AP (1995) Requirement of 19K form of Sonic hedgehog for induction of distinct ventral cell types in CNS explants. Nature 375(May):322–325

    Article  CAS  Google Scholar 

  15. Shi Y, Kirwan P, Livesey FJ (2012) Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat Protoc 7(10):1836–1846

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrien Neyrinck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Neyrinck, K., García-León, J.A. (2021). Single Transcription Factor-Based Differentiation Allowing Fast and Efficient Oligodendrocyte Generation via SOX10 Overexpression. In: Ahlenius, H. (eds) Neural Reprogramming. Methods in Molecular Biology, vol 2352. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1601-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1601-7_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1600-0

  • Online ISBN: 978-1-0716-1601-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics