Skip to main content

Fixed- and Random-Effects Models

  • Protocol
  • First Online:
Meta-Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2345))

Abstract

Deciding whether to use a fixed-effect model or a random-effects model is a primary decision an analyst must make when combining the results from multiple studies through meta-analysis. Both modeling approaches estimate a single effect size of interest. The fixed-effect meta-analysis assumes that all studies share a single common effect and, as a result, all of the variance in observed effect sizes is attributable to sampling error. The random-effects meta-analysis estimates the mean of a distribution of effects, thus assuming that study effect sizes vary from one study to the next. Under this model, variance in observed effect sizes is attributable to both sampling error (within-study variance) and statistical heterogeneity (between-study variance).

The most popular meta-analyses involve using a weighted average to combine the study-level effect sizes. Both fixed- and random-effects models use an inverse-variance weight (variance of the observed effect size). However, given the shared between-study variance used in the random-effects model, it leads to a more balanced distribution of weights than under the fixed-effect model (i.e., small studies are given more relative weight and large studies less). The standard error for these estimators also relates to the inverse-variance weights. As such, the standard errors and confidence intervals for the random-effects model are larger and wider than in the fixed-effect analysis. Indeed, in the presence of statistical heterogeneity, fixed-effect models can lead to overly narrow intervals.

In addition to commonly used, generalizable models, there are additional fixed-effect models and random-effect models that can be considered. Additional fixed-effect models that are specific to dichotomous data are more robust to issues that arise from sparse data. Furthermore, random-effects models can be expanded upon using generalized linear mixed models so that different covariance structures are used to distribute statistical heterogeneity across multiple parameters. Finally, both fixed- and random-effects modeling can be conducted using a Bayesian framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Glass G (1976) Primary, secondary, and meta-analysis of research. Educ Res 5(10):3–8

    Article  Google Scholar 

  2. Feinstein AR (1995) Meta-analysis: statistical alchemy for the 21st century. J Clin Epidemiol 48(1):71–79. https://doi.org/10.1016/0895-4356(94)00110-c

    Article  CAS  PubMed  Google Scholar 

  3. DerSimonian R, Laird N (2015) Meta-analysis in clinical trials revisited. Contemp Clin Trials 45(Pt A):139–145. https://doi.org/10.1016/j.cct.2015.09.002

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hoaglin DC (2016) Misunderstandings about Q and ‘Cochran’s Q test’ in meta-analysis. Stat Med 35(4):485–495. https://doi.org/10.1002/sim.6632

    Article  PubMed  Google Scholar 

  5. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22(4):719–748

    CAS  PubMed  Google Scholar 

  6. Davey J, Turner RM, Clarke MJ, Higgins JP (2011) Characteristics of meta-analyses and their component studies in the Cochrane Database of Systematic Reviews: a cross-sectional, descriptive analysis. BMC Med Res Methodol 11:160. https://doi.org/10.1186/1471-2288-11-160

    Article  PubMed  PubMed Central  Google Scholar 

  7. Higgins J, Thomas J, Chandler J, Cumpston M, Li T, Page M, Welch V (2019) Cochrane handbook for systematic reviews of interventions version 6, 2nd edn. Wiley, Chichester

    Book  Google Scholar 

  8. Bradburn MJ, Deeks JJ, Berlin JA, Russell Localio A (2007) Much ado about nothing: a comparison of the performance of meta-analytical methods with rare events. Stat Med 26(1):53–77. https://doi.org/10.1002/sim.2528

    Article  PubMed  Google Scholar 

  9. Robins J, Breslow N, Greenland S (1986) Estimators of the Mantel-Haenszel variance consistent in both sparse data and large-strata limiting models. Biometrics 42(2):311–323

    Article  CAS  PubMed  Google Scholar 

  10. Greenland S, Robins JM (1985) Estimation of a common effect parameter from sparse follow-up data. Biometrics 41(1):55–68

    Article  CAS  PubMed  Google Scholar 

  11. Simmonds MC, Higgins JP (2016) A general framework for the use of logistic regression models in meta-analysis. Stat Methods Med Res 25(6):2858–2877. https://doi.org/10.1177/0962280214534409

    Article  PubMed  Google Scholar 

  12. Van Houwelingen HC, Zwinderman KH, Stijnen T (1993) A bivariate approach to meta-analysis. Stat Med 12(24):2273–2284. https://doi.org/10.1002/sim.4780122405

    Article  PubMed  Google Scholar 

  13. Jackson D, Law M, Stijnen T, Viechtbauer W, White IR (2018) A comparison of seven random-effects models for meta-analyses that estimate the summary odds ratio. Stat Med 37(7):1059–1085. https://doi.org/10.1002/sim.7588

    Article  PubMed  PubMed Central  Google Scholar 

  14. Higgins JP, Thompson SG, Spiegelhalter DJ (2009) A re-evaluation of random-effects meta-analysis. J R Stat Soc Ser A Stat Soc 172(1):137–159. https://doi.org/10.1111/j.1467-985X.2008.00552.x

    Article  PubMed  PubMed Central  Google Scholar 

  15. Luce BR, Claxton K (1999) Redefining the analytical approach to pharmacoeconomics. Health Econ 8(3):187–189. https://doi.org/10.1002/(SICI)1099-1050(199905)8:3<187::AID-HEC434>3.3.CO;2-D

    Article  CAS  PubMed  Google Scholar 

  16. Spiegelhalter DJ, Abrams KR, Myles JP (2004) Bayesian approaches to clinical trials and health-care evaluation. Wiley, Chichester. vol. Book, Whole

    Google Scholar 

  17. Sutton AJ, Abrams KR (2001) Bayesian methods in meta-analysis and evidence synthesis. Stat Methods Med Res 10(4):277–303. https://doi.org/10.1177/096228020101000404

    Article  CAS  PubMed  Google Scholar 

  18. Goodman S (1999) Toward evidence-based medical statistics. 1: The P value fallacy. Ann Intern Med 130(12):995

    Article  CAS  PubMed  Google Scholar 

  19. Turner RM, Jackson D, Wei Y, Thompson SG, Higgins JP (2015) Predictive distributions for between-study heterogeneity and simple methods for their application in Bayesian meta-analysis. Stat Med 34(6):984–998. https://doi.org/10.1002/sim.6381

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Kanters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kanters, S. (2022). Fixed- and Random-Effects Models. In: Evangelou, E., Veroniki, A.A. (eds) Meta-Research. Methods in Molecular Biology, vol 2345. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1566-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1566-9_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1565-2

  • Online ISBN: 978-1-0716-1566-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics