Skip to main content

PGK1 : An Essential Player in Modulating Tumor Metabolism

  • Protocol
  • First Online:
Physical Exercise and Natural and Synthetic Products in Health and Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2343))

Abstract

Phosphoglycerate kinase 1 (PGK1) is the first enzyme in glycolysis to generate a molecule of ATP in the conversion of 1,3-bisphosphoglycerate (1,3-BPG) to 3-phosphoglycerate (3-PG). In addition to the role of glycolysis, PGK-1 acts as a polymerase alpha cofactor protein, with effects on the tricarboxylic acid cycle, DNA replication and repair. Posttranslational modifications such as methylation, phosphorylation, and acetylation have been seen to activate PGK1 in cancer. High levels of intracellular PGK1 are associated with tumorigenesis and progression, and chemoradiotherapy resistance. However, high levels of extracellular PGK1 suppress angiogenesis and subsequently counteract cancer malignancy. Here we have summarized the current knowledge on the mechanisms and effects of PGK1 in various tumor types and evaluated its potential prognostic and therapeutic value in cancer. The data summarized here aims at providing molecular information and new ideas of employing natural products to combat cancer associated with PGK1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1,3-BPG:

1,3-Bisphosphoglycerate

3-PG:

3-Phosphoglycerate

ADP:

Adenosine diphosphate

AKT:

Protein kinase B

ATP:

Adenosine triphosphate

BECN1:

Beclin 1

CAF:

Cancer-activated fibroblasts

CXCL12:

Chemokine ligand 12

CXCR4:

Chemokine receptor 4

DNMT:

Maintenance DNA methyltransferase

EGCG :

Epigallocatechin gallate

ERK1/2:

Extracellular signal-regulated protein kinases 1 and 2

GDH:

Glutamate dehydrogenase

GLUT1:

Glucose transporter 1

GLUT2:

Glucose transporter 2

HDAC3:

Histone deacetylase 3

HIF-1α:

Hypoxia inducible factor 1-alpha

HKII:

Hexokinase II

KAT9:

Lysine acetyltransferase

LDH-A:

Lactate dehydrogenase-A

mTOR:

Mechanistic target of rapamycin

NSCLC:

Non-small-cell lung cancer

NSF:

Normal fibroblasts

O-GlcNAc:

O-linked N-acetylglucosamine

PCAF:

P300/CBP-associated factor

PDH:

Pyruvate dehydrogenase

PDHK1:

Pyruvate dehydrogenase kinase 2

PGK1 :

Phosphoglycerate kinase 1

Rab11FIP2:

RAB11 family-interacting protein 2

SAM:

S-adenosyl methionine

SIRT7:

Sirtuin 7

TCA:

Tricarboxylic acid cycle

TOM:

Translocase of the outer membrane

U2AF2:

U2 small nuclear RNA auxiliary factor

References

  1. Banks RD, Blake CC, Evans PR, Haser R, Rice DW, Hardy GW et al (1979) Sequence, structure and activity of phosphoglycerate kinase: a possible hinge-bending enzyme. Nature 279(5716):773–777

    Article  CAS  PubMed  Google Scholar 

  2. Yu L, Chen X, Sun X, Wang L, Chen S (2017) The glycolytic switch in tumors: how many players are involved. J Cancer 8(17):3430–3440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Fiorillo A, Petrosino M, Ilari A, Pasquo A, Cipollone A, Maggi M et al (2018) The phosphoglycerate kinase 1 variants found in carcinoma cells display different catalytic activity and conformational stability compared to the native enzyme. PLoS One 13(7):e0199191. https://doi.org/10.1371/journal.pone.0199191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li X, Zheng Y, Lu Z (2016) PGK1 is a new member of the protein kinome. Cell Cycle 15(14):1803–1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pontén F, Schwenk JM, Asplund A, Edqvist PH (2011) The human protein atlas as a proteomic resource for biomarker discovery. J Intern Med 270(5):428–446

    Article  PubMed  CAS  Google Scholar 

  6. Murphy JP, Pinto DM (2011) Targeted proteomic analysis of glycolysis in cancer cells. J Proteome Res 10(2):604–613

    Article  CAS  PubMed  Google Scholar 

  7. Fu D, He C, Wei J, Zhang Z, Luo Y, Tan H et al (2018) PGK1 is a potential survival biomarker and invasion promoter by regulating the HIF-1α-mediated epithelial-mesenchymal transition process in breast cancer. Cell Physiol Biochem 51(5):2434–2444

    Article  CAS  PubMed  Google Scholar 

  8. De Mello RA, Aguiar PN, Tadokoro H, Farias-Vieira TM, Castelo-Branco P, de Lima Lopes G et al (2018) MetaLanc9 as a novel biomarker for non-small cell lung cancer: promising treatments via a PGK1-activated AKT/mTOR pathway. J Thorac Dis 10(Suppl 17):S2076–S2078

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yu T, Zhao Y, Hu Z, Li J, Chu D, Zhang J, Li Z et al (2017) MetaLnc9 facilitates lung cancer metastasis via a PGK1-activated AKT/mTOR pathway. Cancer Res 77(21):5782–5794

    Article  CAS  PubMed  Google Scholar 

  10. Li X, Jiang Y, Meisenhelder J, Yang W, Hawke D, Zheng Y et al (2016) Mitochondria-translocated PGK1 functions as a protein kinase to coordinate glycolysis and the TCA cycle in tumorigenesis. Mol Cell 61(5):705–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nie H, Ju H, Fan J, Shi X, Cheng Y, Cang X et al (2020) O-GlcNAcylation of PGK1 coordinates glycolysis and TCA cycle to promote tumor growth. Nat Commun 11(36). https://doi.org/10.1038/s41467-019-13601-8

  12. Zhou J, Tang J, Sun W, Wang H (2019) PGK1 facilities cisplatin chemoresistance by triggering HSP90/ERK pathway mediated DNA repair and methylation in endometrial endometrioid adenocarcinoma. Mol Med 25(1):11. https://doi.org/10.1186/s10020-019-0079-0

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kanai Y, Hirohashi S (2007) Alterations of DNA methylation associated with abnormalities of DNA methyltransferases in human cancers during transition from a precancerous to a malignant state. Carcinogenesis 28(12):2434–2442

    Article  CAS  PubMed  Google Scholar 

  14. Si X, Liu Y, Lv J, Ding H, Zhang X, Shao L et al (2016) ERα propelled aberrant Global DNA hypermethylation by activating the DNMT1 gene to enhance anticancer drug resistance in human breast cancer cells. Oncotarget 7(15):20966–20980

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shao F, Yang X, Wang W, Wang J, Guo W, Feng X et al (2019) Associations of PGK1 promoter hypomethylation and PGK1-mediated PDHK1 phosphorylation with cancer stage and prognosis: a TCGA pan-cancer analysis. Cancer Commun 39(1):1–17

    Article  Google Scholar 

  16. Wang S, Jiang B, Zhang T, Liu L, Wang Y, Wang Y et al (2015) Insulin and mTOR pathway regulate HDAC3-mediated deacetylation and activation of PGK1. PLoS Biol 13(9):e1002243. https://doi.org/10.1371/journal.pbio.1002243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hu H, Zhu W, Qin J, Chen M, Gong L, Li L et al (2017) Acetylation of PGK1 promotes liver cancer cell proliferation and tumorigenesis. Hepatology 65(2):515–528

    Article  CAS  PubMed  Google Scholar 

  18. Wang J, Ying G, Wang J, Jung Y, Lu J, Zhu J et al (2010) Characterization of phosphoglycerate kinase-1 expression of stromal cells derived from tumor microenvironment in prostate cancer progression. Cancer Res 70(2):471–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Micke P, Ostman A (2005) Exploring the tumour environment: cancer-associated fibroblasts as targets in cancer therapy. Expert Opin Ther Targets 9:1217–1233

    Article  CAS  PubMed  Google Scholar 

  20. Zieker D, Königsrainer I, Weinreich J, Beckert S, Glatzle J, Nieselt K et al (2010) Phosphoglycerate kinase 1 promoting tumor progression and metastasis in gastric cancer—detected in a tumor mouse model using positron emission tomography/magnetic resonance imaging. Cell Physiol Biochem 26(2):147–154

    Article  CAS  PubMed  Google Scholar 

  21. Zieker D, Königsrainer I, Traub F, Nieselt K, Knapp B, Schillinger C et al (2008) PGK1 a potential marker for peritoneal dissemination in gastric cancer. Cell Physiol Biochem 21(5–6):429–436

    Article  CAS  PubMed  Google Scholar 

  22. Zieker D, Königsrainer I, Tritschler I, Löffler M, Beckert S, Traub F et al (2010) Phosphoglycerate kinase 1 a promoting enzyme for peritoneal dissemination in gastric cancer. Int J Cancer 126(6):1513–1520

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Walenkamp A, Lapa C, Herrmann K, Wester H (2017) CXCR4 ligands: the next big hit? J Nucl Med 58(Suppl 2):77S–82S

    Article  CAS  PubMed  Google Scholar 

  24. Ai J, Huang H, Lv X, Tang Z, Chen M, Chen T et al (2011) FLNA and PGK1 are two potential markers for progression in hepatocellular carcinoma. Cell Physiol Biochem 27(3–4):207–216

    Article  CAS  PubMed  Google Scholar 

  25. University of Texas M.D. Anderson Cancer Center (2016) PGK1 protein promotes brain tumor formation, cancer metabolism: study findings may provide molecular basis for improved diagnosis and treatment of cancer. Science Daily. 3 Mar. https://www.sciencedaily.com/releases/2016/03/160303133508.htm

  26. White E (2012) Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 12(6):401–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang Y, Yu G, Chu H, Wang X, Xiong L, Cai G et al (2018) Macrophage-associated PGK1 phosphorylation promotes aerobic glycolysis and tumorigenesis. Mol Cell 71(2):201–215

    Article  CAS  PubMed  Google Scholar 

  28. Ho MY, Tang SJ, Ng WV, Yang W, Leu SJ, Lin YC et al (2010) Nucleotide-binding domain of phosphoglycerate kinase 1 reduces tumor growth by suppressing COX-2 expression. Cancer Sci 101(11):2411–2416

    Article  CAS  PubMed  Google Scholar 

  29. Shichijo S, Azuma K, Komatsu N, Ito M, Maeda Y, Ishihara Y et al (2004) Two proliferation-related proteins, TYMS and PGK1, could be new cytotoxic T lymphocyte-directed tumor-associated antigens of HLA-A2+ colon cancer. Clin Cancer Res 10(17):5828–5836

    Article  CAS  PubMed  Google Scholar 

  30. Xie H, Tong G, Zhang Y, Liang S, Tang K, Yang Q (2017) PGK1 drives hepatocellular carcinoma metastasis by enhancing metabolic process. Int J Mol Sci 18(8):1630. https://doi.org/10.3390/ijms18081630

    Article  CAS  PubMed Central  Google Scholar 

  31. Qian X, Li X, Lu Z (2017) Protein kinase activity of the glycolytic enzyme PGK1 regulates autophagy to promote tumorigenesis. Autophagy 13(7):1246–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ariosa AR, Klionsky DJ (2017) A novel role for a glycolytic pathway kinase in regulating autophagy has implications in cancer therapy. Autophagy 13(7):1091–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Daly EB, Wind T, Jiang XM, Sun L, Hogg PJ (2004) Secretion of phosphoglycerate kinase from tumour cells is controlled by oxygen-sensing hydroxylases. Biochim Biophys Acta 1691(1):17–22

    Article  CAS  PubMed  Google Scholar 

  34. Beutler E (2007) PGK deficiency. Br J Haematol 136(1):3–11

    Article  CAS  PubMed  Google Scholar 

  35. Lay AJ, Jiang XM, Kisker O, Flynn E, Underwood A, Condron R et al (2000) Phosphoglycerate kinase acts in tumour angiogenesis as a disulphide reductase. Nature 408(6814):869–873

    Article  CAS  PubMed  Google Scholar 

  36. O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M et al (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79(2):315–328

    Article  PubMed  Google Scholar 

  37. Wang J, Wang J, Dai J, Jung Y, Wei CL, Wang Y et al (2007) A glycolytic mechanism regulating an angiogenic switch in prostate cancer. Cancer Res 67(1):149–159

    Article  CAS  PubMed  Google Scholar 

  38. Jung Y, Shiozawa Y, Wang J, Wang J, Wang Z, Pedersen EA et al (2009) Expression of PGK1 by prostate cancer cells induces bone formation. Mol Cancer Res 7(10):1595–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tang SJ, Ho MY, Cho HC, Lin YC, Sun GH, Chi KH et al (2008) Phosphoglycerate kinase 1-overexpressing lung cancer cells reduce cyclooxygenase 2 expression and promote anti-tumor immunity in vivo. Int J Cancer 123(12):2840–2848

    Article  CAS  PubMed  Google Scholar 

  40. Chen J, Cao S, Situ B, Zhong J, Hu Y, Li S et al (2018) Metabolic reprogramming-based characterization of circulating tumor cells in prostate cancer. J Exp Clin Cancer Res 37(1):127. https://doi.org/10.1186/s13046-018-0789-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ahmad SS, Glatzle J, Bajaeifer K, Bühler S, Lehmann T, Königsrainer I et al (2013) Phosphoglycerate kinase 1 as a promoter of metastasis in colon cancer. Int J Oncol 43(2):586–590

    Article  CAS  PubMed  Google Scholar 

  42. Sun S, Liang X, Zhang X, Liu T, Shi Q, Song Y et al (2015) Phosphoglycerate kinase-1 is a predictor of poor survival and a novel prognostic biomarker of chemoresistance to paclitaxel treatment in breast cancer. Br J Cancer 112(8):1332–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schneider C, Archid R, Fischer N, Bühler S, Venturelli S, Berger A et al (2015) Metabolic alteration—overcoming therapy resistance in gastric cancer via PGK-1 inhibition in a combined therapy with standard chemotherapeutics. Int J Surg 22:92–98

    Article  PubMed  Google Scholar 

  44. Marelli G, Howells A, Lemoine N, Wang Y (2018) Oncolytic viral therapy and the immune system: a double-edged sword against cancer. Front Immunol 9:866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Huang Z, Zhou L, Chen Z, Nice E, Huang C (2016) Stress management by autophagy: implications for chemoresistance. Int J Cancer 139(1):23–32

    Article  CAS  PubMed  Google Scholar 

  46. Duan Z, Lamendola DE, Yusuf RZ, Penson RT, Preffer FI, Seiden MV (2002) Overexpression of human phosphoglycerate kinase 1 (PGK1) induces a multidrug resistance phenotype. Anticancer Res 22(4):1933–1941

    CAS  PubMed  Google Scholar 

  47. Townsend M, Ence Z, Felsted A, Parker A, Piccolo S, Robison R et al (2019) Potential new biomarkers for endometrial cancer. Cancer Cell Int 19:19. https://doi.org/10.1186/s12935-019-0731-3

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ameis H, Drenckhan A, Loga K, Escherich G, Wenke K, Izbicki J et al (2013) PGK1 as predictor of CXCR4 expression, bone marrow metastases and survival in neuroblastoma. PLoS One 8(12):e83701. https://doi.org/10.1371/journal.pone.0083701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Irshad K, Mohapatra S, Srivastava C, Garg H, Mishra S, Dikshit B et al (2015) A combined gene signature of hypoxia and notch pathway in human glioblastoma and its prognostic relevance. PLoS One 10(3):e0118201. https://doi.org/10.1371/journal.pone.0118201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Carnielli C, Macedo C, Rossi T, Granato C, Rivera C, Domingues R et al (2018) Combining discovery and targeted proteomics reveals a prognostic signature in oral cancer. Nat Commun 9(1):3598. https://doi.org/10.1038/s41467-018-05696-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lu W, Gao J, Yang J, Cao Y, Jiang L, Li M et al (2015) Down-regulated phosphoglycerate kinase 1 expression is associated with poor prognosis in patients with gallbladder cancer. Medicine (Baltimore) 94(49):e2244. https://doi.org/10.1097/MD.0000000000002244

    Article  Google Scholar 

  52. Torres MP, Rachagani S, Purohit V, Pandey P, Joshi S, Moore ED et al (2012) Graviola: a novel promising natural-derived drug that inhibits tumorigenicity and metastasis of pancreatic cancer cells in vitro and in vivo through altering cell metabolism. Cancer Lett 323(1):29–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li C, Allen A, Kwagh J, Doliba NM, Qin W, Het al N (2006) Green tea polyphenols modulate insulin secretion by inhibiting glutamate dehydrogenase. J Biol Chem 281(15):10214–10221

    Article  CAS  PubMed  Google Scholar 

  54. Li C, Li M, Chen P, Narayan S, Matschinsky FM, Bennett MJ et al (2011) Green tea polyphenols control dysregulated glutamate dehydrogenase in transgenic mice by hijacking the ADP activation site. J Biol Chem 286(39):34164–34174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH grants R01DE028351 and R03DE028387 and CURS Summer Scholars (to Y. Teng).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Teng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Duncan, L., Shay, C., Teng, Y. (2022). PGK1 : An Essential Player in Modulating Tumor Metabolism. In: Guest, P.C. (eds) Physical Exercise and Natural and Synthetic Products in Health and Disease. Methods in Molecular Biology, vol 2343. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1558-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1558-4_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1557-7

  • Online ISBN: 978-1-0716-1558-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics