Skip to main content

Crystal Structures of Drug-Metabolizing CYPs

  • Protocol
  • First Online:
Enzyme Kinetics in Drug Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2342))

  • 2505 Accesses

Abstract

The complex enzyme kinetics displayed by drug-metabolizing cytochrome P450 enzymes (CYPs) (see Chapter 9) can, in part, be explained by an examination of their crystallographic protein structures. Fortunately, despite low sequence similarity between different families of drug-metabolizing CYPs, there exists a high degree of structural homology within the superfamily. This similarity in the protein fold allows for a direct comparison of the structural features of CYPs that contribute toward differences in substrate binding, heterotropic and homotropic cooperativity, and genetic variability in drug metabolism. In this chapter, we first provide an overview of the nomenclature and the role of structural features that are common in all CYPs. We then apply these definitions to understand the different substrate specificities and functions in the CYP3A, CYP2C, and CYP2D families of enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williams PA, Cosme J, Ward A, Angove HC, Matak Vinkovic D, Jhoti H (2003) Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature 424(6947):464–468. https://doi.org/10.1038/nature01862

    Article  CAS  PubMed  Google Scholar 

  2. Baylon JL, Lenov IL, Sligar SG, Tajkhorshid E (2013) Characterizing the membrane-bound state of cytochrome P450 3A4: structure, depth of insertion, and orientation. J Am Chem Soc 135(23):8542–8551. https://doi.org/10.1021/ja4003525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Szczesna-Skorupa E, Ahn K, Chen CD, Doray B, Kemper B (1995) The cytoplasmic and N-terminal transmembrane domains of cytochrome P450 contain independent signals for retention in the endoplasmic reticulum. J Biol Chem 270(41):24327–24333. https://doi.org/10.1074/jbc.270.41.24327

    Article  CAS  PubMed  Google Scholar 

  4. Szczesna-Skorupa E, Kemper B (2001) The juxtamembrane sequence of cytochrome P-450 2C1 contains an endoplasmic reticulum retention signal. J Biol Chem 276(48):45009–45014. https://doi.org/10.1074/jbc.M104676200

    Article  CAS  PubMed  Google Scholar 

  5. Pravda L, Sehnal D, Svobodova Varekova R, Navratilova V, Tousek D, Berka K, Otyepka M, Koca J (2018) ChannelsDB: database of biomacromolecular tunnels and pores. Nucleic Acids Res 46(D1):D399–D405. https://doi.org/10.1093/nar/gkx868

    Article  CAS  PubMed  Google Scholar 

  6. Scott EE, He YA, Wester MR, White MA, Chin CC, Halpert JR, Johnson EF, Stout CD (2003) An open conformation of mammalian cytochrome P450 2B4 at 1.6-A resolution. Proc Natl Acad Sci U S A 100(23):13196–13201. https://doi.org/10.1073/pnas.2133986100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Scott EE, White MA, He YA, Johnson EF, Stout CD, Halpert JR (2004) Structure of mammalian cytochrome P450 2B4 complexed with 4-(4-chlorophenyl)imidazole at 1.9-A resolution: insight into the range of P450 conformations and the coordination of redox partner binding. J Biol Chem 279(26):27294–27301. https://doi.org/10.1074/jbc.M403349200

    Article  CAS  PubMed  Google Scholar 

  8. Bart AG, Takahashi RH, Wang X, Scott EE (2020) Human Cytochrome P450 1A1 Adapts Active Site for Atypical Nonplanar Substrate. Drug Metab Dispos 48(2):86–92. https://doi.org/10.1124/dmd.119.089607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Estrada DF, Skinner AL, Laurence JS, Scott EE (2014) Human cytochrome P450 17A1 conformational selection: modulation by ligand and cytochrome b5. J Biol Chem 289(20):14310–14320. https://doi.org/10.1074/jbc.M114.560144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yoshigae Y, Kent UM, Hollenberg PF (2013) Role of the highly conserved threonine in cytochrome P450 2E1: prevention of H2O2-induced inactivation during electron transfer. Biochemistry 52(27):4636–4647. https://doi.org/10.1021/bi4004843

    Article  CAS  PubMed  Google Scholar 

  11. Zhang H, Lin HL, Kenaan C, Hollenberg PF (2011) Targeting of the highly conserved threonine 302 residue of cytochromes P450 2B family during mechanism-based inactivation by aryl acetylenes. Arch Biochem Biophys 507(1):135–143. https://doi.org/10.1016/j.abb.2010.09.006

    Article  CAS  PubMed  Google Scholar 

  12. Cojocaru V, Balali-Mood K, Sansom MS, Wade RC (2011) Structure and dynamics of the membrane-bound cytochrome P450 2C9. PLoS Comput Biol 7(8):e1002152. https://doi.org/10.1371/journal.pcbi.1002152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bart AG, Scott EE (2017) Structural and functional effects of cytochrome b5 interactions with human cytochrome P450 enzymes. J Biol Chem 292(51):20818–20833. https://doi.org/10.1074/jbc.RA117.000220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Estrada DF, Laurence JS, Scott EE (2016) Cytochrome P450 17A1 Interactions with the FMN Domain of Its Reductase as Characterized by NMR. J Biol Chem 291(8):3990–4003. https://doi.org/10.1074/jbc.M115.677294

    Article  CAS  PubMed  Google Scholar 

  15. Strushkevich N, MacKenzie F, Cherkesova T, Grabovec I, Usanov S, Park HW (2011) Structural basis for pregnenolone biosynthesis by the mitochondrial monooxygenase system. Proc Natl Acad Sci U S A 108(25):10139–10143. https://doi.org/10.1073/pnas.1019441108

    Article  PubMed  PubMed Central  Google Scholar 

  16. Duggal R, Denisov IG, Sligar SG (2018) Cytochrome b5 enhances androgen synthesis by rapidly reducing the CYP17A1 oxy-complex in the lyase step. FEBS Lett 592(13):2282–2288. https://doi.org/10.1002/1873-3468.13153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang H, Gao N, Liu T, Fang Y, Qi B, Wen Q, Zhou J, Jia L, Qiao H (2015) Effect of Cytochrome b5 Content on the Activity of Polymorphic CYP1A2, 2B6, and 2E1 in Human Liver Microsomes. PLoS One 10(6):e0128547. https://doi.org/10.1371/journal.pone.0128547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Henderson CJ, McLaughlin LA, Scheer N, Stanley LA, Wolf CR (2015) Cytochrome b5 is a major determinant of human cytochrome P450 CYP2D6 and CYP3A4 activity in vivo. Mol Pharmacol 87(4):733–739. https://doi.org/10.1124/mol.114.097394

    Article  CAS  PubMed  Google Scholar 

  19. Guengerich FP (1999) Cytochrome P-450 3A4: regulation and role in drug metabolism. Annu Rev Pharmacol Toxicol 39:1–17. https://doi.org/10.1146/annurev.pharmtox.39.1.1

    Article  CAS  PubMed  Google Scholar 

  20. Williams PA, Cosme J, Vinkovic DM, Ward A, Angove HC, Day PJ, Vonrhein C, Tickle IJ, Jhoti H (2004) Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science 305(5684):683–686. https://doi.org/10.1126/science.1099736

    Article  CAS  PubMed  Google Scholar 

  21. Ekroos M, Sjogren T (2006) Structural basis for ligand promiscuity in cytochrome P450 3A4. Proc Natl Acad Sci U S A 103(37):13682–13687. https://doi.org/10.1073/pnas.0603236103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Korzekwa KR, Krishnamachary N, Shou M, Ogai A, Parise RA, Rettie AE, Gonzalez FJ, Tracy TS (1998) Evaluation of atypical cytochrome P450 kinetics with two-substrate models: evidence that multiple substrates can simultaneously bind to cytochrome P450 active sites. Biochemistry 37(12):4137–4147. https://doi.org/10.1021/bi9715627

    Article  CAS  PubMed  Google Scholar 

  23. Shou M, Grogan J, Mancewicz JA, Krausz KW, Gonzalez FJ, Gelboin HV, Korzekwa KR (1994) Activation of CYP3A4: evidence for the simultaneous binding of two substrates in a cytochrome P450 active site. Biochemistry 33(21):6450–6455. https://doi.org/10.1021/bi00187a009

    Article  CAS  PubMed  Google Scholar 

  24. Sevrioukova IF, Poulos TL (2017) Structural basis for regiospecific midazolam oxidation by human cytochrome P450 3A4. Proc Natl Acad Sci U S A 114(3):486–491. https://doi.org/10.1073/pnas.1616198114

    Article  CAS  PubMed  Google Scholar 

  25. Yano JK, Wester MR, Schoch GA, Griffin KJ, Stout CD, Johnson EF (2004) The structure of human microsomal cytochrome P450 3A4 determined by X-ray crystallography to 2.05-A resolution. J Biol Chem 279(37):38091–38094. https://doi.org/10.1074/jbc.C400293200

    Article  CAS  PubMed  Google Scholar 

  26. Maekawa K, Yoshimura T, Saito Y, Fujimura Y, Aohara F, Emoto C, Iwasaki K, Hanioka N, Narimatsu S, Niwa T, Sawada J (2009) Functional characterization of CYP3A4.16: catalytic activities toward midazolam and carbamazepine. Xenobiotica 39(2):140–147. https://doi.org/10.1080/00498250802617746

    Article  CAS  PubMed  Google Scholar 

  27. Roberts AG, Yang J, Halpert JR, Nelson SD, Thummel KT, Atkins WM (2011) The structural basis for homotropic and heterotropic cooperativity of midazolam metabolism by human cytochrome P450 3A4. Biochemistry 50(50):10804–10818. https://doi.org/10.1021/bi200924t

    Article  CAS  PubMed  Google Scholar 

  28. Bren U, Oostenbrink C (2012) Cytochrome P450 3A4 inhibition by ketoconazole: tackling the problem of ligand cooperativity using molecular dynamics simulations and free-energy calculations. J Chem Inf Model 52(6):1573–1582. https://doi.org/10.1021/ci300118x

    Article  CAS  PubMed  Google Scholar 

  29. Fa B, Cong S, Wang J (2015) Pi-pi stacking mediated cooperative mechanism for human cytochrome P450 3A4. Molecules 20(5):7558–7573. https://doi.org/10.3390/molecules20057558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lin QM, Li YH, Liu Q, Pang NH, Xu RA, Cai JP, Hu GX (2019) Functional characteristics of CYP3A4 allelic variants on the metabolism of loperamide in vitro. Infect Drug Resist 12:2809–2817. https://doi.org/10.2147/IDR.S215129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lin QM, Li YH, Lu XR, Wang R, Pang NH, Xu RA, Cai JP, Hu GX (2019) Characterization of genetic variation in CYP3A4 on the metabolism of cabozantinib in vitro. Chem Res Toxicol 32(8):1583–1590. https://doi.org/10.1021/acs.chemrestox.9b00100

    Article  CAS  PubMed  Google Scholar 

  32. Chen B, Zhang XD, Wen J, Zhang B, Chen D, Wang S, Cai JP, Hu GX (2020) Effects of 26 recombinant CYP3A4 variants on brexpiprazole metabolism. Chem Res Toxicol 33(1):172–180. https://doi.org/10.1021/acs.chemrestox.9b00186

    Article  CAS  PubMed  Google Scholar 

  33. Arendse LB, Blackburn JM (2018) Effects of polymorphic variation on the thermostability of heterogenous populations of CYP3A4 and CYP2C9 enzymes in solution. Sci Rep 8(1):11876. https://doi.org/10.1038/s41598-018-30195-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. McGraw J, Cherney M, Bichler K, Gerhardt A, Nauman M (2019) The relative role of CYP3A4 and CYP3A5 in eplerenone metabolism. Toxicol Lett 315:9–13. https://doi.org/10.1016/j.toxlet.2019.08.003

    Article  CAS  PubMed  Google Scholar 

  35. Hsu MH, Johnson EF (2019) Active-site differences between substrate-free and ritonavir-bound cytochrome P450 (CYP) 3A5 reveal plasticity differences between CYP3A5 and CYP3A4. J Biol Chem 294(20):8015–8022. https://doi.org/10.1074/jbc.RA119.007928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hsu MH, Savas U, Johnson EF (2018) The x-ray crystal structure of the human mono-oxygenase cytochrome P450 3A5-ritonavir complex reveals active site differences between P450s 3A4 and 3A5. Mol Pharmacol 93(1):14–24. https://doi.org/10.1124/mol.117.109744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu JJ, Cao YF, Feng L, He YQ, Hong JY, Dou TY, Wang P, Hao DC, Ge GB, Yang L (2017) A naturally occurring isoform-specific probe for highly selective and sensitive detection of human cytochrome P450 3A5. J Med Chem 60(9):3804–3813. https://doi.org/10.1021/acs.jmedchem.7b00001

    Article  CAS  PubMed  Google Scholar 

  38. Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP (1994) Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 270(1):414–423

    CAS  PubMed  Google Scholar 

  39. Rendic S (2002) Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev 34(1-2):83–448. https://doi.org/10.1081/dmr-120001392

    Article  CAS  PubMed  Google Scholar 

  40. Chen Y, Goldstein JA (2009) The transcriptional regulation of the human CYP2C genes. Curr Drug Metab 10(6):567–578. https://doi.org/10.2174/138920009789375397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Isvoran A, Louet M, Vladoiu DL, Craciun D, Loriot MA, Villoutreix BO, Miteva MA (2017) Pharmacogenomics of the cytochrome P450 2C family: impacts of amino acid variations on drug metabolism. Drug Discov Today 22(2):366–376. https://doi.org/10.1016/j.drudis.2016.09.015

    Article  CAS  PubMed  Google Scholar 

  42. Schoch GA, Yano JK, Sansen S, Dansette PM, Stout CD, Johnson EF (2008) Determinants of cytochrome P450 2C8 substrate binding: structures of complexes with montelukast, troglitazone, felodipine, and 9-cis-retinoic acid. J Biol Chem 283(25):17227–17237. https://doi.org/10.1074/jbc.M802180200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Skerratt SE, Andrews M, Bagal SK, Bilsland J, Brown D, Bungay PJ, Cole S, Gibson KR, Jones R, Morao I, Nedderman A, Omoto K, Robinson C, Ryckmans T, Skinner K, Stupple P, Waldron G (2016) The discovery of a potent, selective, and peripherally restricted Pan-Trk inhibitor (PF-06273340) for the treatment of pain. J Med Chem 59(22):10084–10099. https://doi.org/10.1021/acs.jmedchem.6b00850

    Article  CAS  PubMed  Google Scholar 

  44. Wester MR, Yano JK, Schoch GA, Yang C, Griffin KJ, Stout CD, Johnson EF (2004) The structure of human cytochrome P450 2C9 complexed with flurbiprofen at 2.0-A resolution. J Biol Chem 279(34):35630–35637. https://doi.org/10.1074/jbc.M405427200

    Article  CAS  PubMed  Google Scholar 

  45. Reynald RL, Sansen S, Stout CD, Johnson EF (2012) Structural characterization of human cytochrome P450 2C19: active site differences between P450s 2C8, 2C9, and 2C19. J Biol Chem 287(53):44581–44591. https://doi.org/10.1074/jbc.M112.424895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stearns RA, Chakravarty PK, Chen R, Chiu SH (1995) Biotransformation of losartan to its active carboxylic acid metabolite in human liver microsomes. Role of cytochrome P4502C and 3A subfamily members. Drug Metab Dispos 23(2):207–215

    CAS  PubMed  Google Scholar 

  47. Rettie AE, Korzekwa KR, Kunze KL, Lawrence RF, Eddy AC, Aoyama T, Gelboin HV, Gonzalez FJ, Trager WF (1992) Hydroxylation of warfarin by human cDNA-expressed cytochrome P-450: a role for P-4502C9 in the etiology of (S)-warfarin-drug interactions. Chem Res Toxicol 5(1):54–59. https://doi.org/10.1021/tx00025a009

    Article  CAS  PubMed  Google Scholar 

  48. Hashimoto Y, Otsuki Y, Odani A, Takano M, Hattori H, Furusho K, Iui K (1996) Effect of CYP2C polymorphisms on the pharmacokinetics of phenytoin in Japanese patients with epilepsy. Biol Pharm Bull 19(8):1103–1105. https://doi.org/10.1248/bpb.19.1103

    Article  CAS  PubMed  Google Scholar 

  49. Ohgiya S, Komori M, Ohi H, Shiramatsu K, Shinriki N, Kamataki T (1992) Six-base deletion occurring in messages of human cytochrome P-450 in the CYP2C subfamily results in reduction of tolbutamide hydroxylase activity. Biochem Int 27(6):1073–1081

    CAS  PubMed  Google Scholar 

  50. Maekawa K, Adachi M, Matsuzawa Y, Zhang Q, Kuroki R, Saito Y, Shah MB (2017) Structural basis of single-nucleotide polymorphisms in cytochrome P450 2C9. Biochemistry 56(41):5476–5480. https://doi.org/10.1021/acs.biochem.7b00795

    Article  CAS  PubMed  Google Scholar 

  51. Preissner SC, Hoffmann MF, Preissner R, Dunkel M, Gewiess A, Preissner S (2013) Polymorphic cytochrome P450 enzymes (CYPs) and their role in personalized therapy. PLoS One 8(12):e82562. https://doi.org/10.1371/journal.pone.0082562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. LLerena A, Naranjo MEG, Rodrigues-Soares F, Penas-LLedo EM, Farinas H, Tarazona-Santos E (2014) Interethnic variability of CYP2D6 alleles and of predicted and measured metabolic phenotypes across world populations. Expert Opin Drug Met 10(11):1569–1583. https://doi.org/10.1517/17425255.2014.964204

    Article  CAS  Google Scholar 

  53. Ingelman-Sundberg M, Sim SC (2010) Pharmacogenetic biomarkers as tools for improved drug therapy; emphasis on the cytochrome P450 system. Biochem Biophys Res Commun 396(1):90–94. https://doi.org/10.1016/j.bbrc.2010.02.162

    Article  CAS  PubMed  Google Scholar 

  54. Guengerich FP, Miller GP, Hanna IH, Martin MV, Leger S, Black C, Chauret N, Silva JM, Trimble LA, Yergey JA, Nicoll-Griffith DA (2002) Diversity in the oxidation of substrates by cytochrome P450 2D6: lack of an obligatory role of aspartate 301-substrate electrostatic bonding. Biochemistry 41(36):11025–11034. https://doi.org/10.1021/bi020341k

    Article  CAS  PubMed  Google Scholar 

  55. Paine MJ, McLaughlin LA, Flanagan JU, Kemp CA, Sutcliffe MJ, Roberts GC, Wolf CR (2003) Residues glutamate 216 and aspartate 301 are key determinants of substrate specificity and product regioselectivity in cytochrome P450 2D6. J Biol Chem 278(6):4021–4027. https://doi.org/10.1074/jbc.M209519200

    Article  CAS  PubMed  Google Scholar 

  56. Guengerich FP, Hanna IH, Martin MV, Gillam EM (2003) Role of glutamic acid 216 in cytochrome P450 2D6 substrate binding and catalysis. Biochemistry 42(5):1245–1253. https://doi.org/10.1021/bi027085w

    Article  CAS  PubMed  Google Scholar 

  57. Hayhurst GP, Harlow J, Chowdry J, Gross E, Hilton E, Lennard MS, Tucker GT, Ellis SW (2001) Influence of phenylalanine-481 substitutions on the catalytic activity of cytochrome P450 2D6. Biochem J 355(Pt 2):373–379. https://doi.org/10.1042/0264-6021:3550373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Smith G, Modi S, Pillai I, Lian LY, Sutcliffe MJ, Pritchard MP, Friedberg T, Roberts GC, Wolf CR (1998) Determinants of the substrate specificity of human cytochrome P-450 CYP2D6: design and construction of a mutant with testosterone hydroxylase activity. Biochem J 331(Pt 3):783–792. https://doi.org/10.1042/bj3310783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rowland P, Blaney FE, Smyth MG, Jones JJ, Leydon VR, Oxbrow AK, Lewis CJ, Tennant MG, Modi S, Eggleston DS, Chenery RJ, Bridges AM (2006) Crystal structure of human cytochrome P450 2D6. J Biol Chem 281(11):7614–7622. https://doi.org/10.1074/jbc.M511232200

    Article  CAS  PubMed  Google Scholar 

  60. Wang A, Stout CD, Zhang Q, Johnson EF (2015) Contributions of ionic interactions and protein dynamics to cytochrome P450 2D6 (CYP2D6) substrate and inhibitor binding. J Biol Chem 290(8):5092–5104. https://doi.org/10.1074/jbc.M114.627661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wojcikowski J, Maurel P, Daniel WA (2006) Characterization of human cytochrome p450 enzymes involved in the metabolism of the piperidine-type phenothiazine neuroleptic thioridazine. Drug Metab Dispos 34(3):471–476. https://doi.org/10.1124/dmd.105.006445

    Article  CAS  PubMed  Google Scholar 

  62. Masuda K, Tamagake K, Okuda Y, Torigoe F, Tsuzuki D, Isobe T, Hichiya H, Hanioka N, Yamamoto S, Narimatsu S (2005) Change in enantioselectivity in bufuralol 1''-hydroxylation by the substitution of phenylalanine-120 by alanine in cytochrome P450 2D6. Chirality 17(1):37–43. https://doi.org/10.1002/chir.20092

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Fernando Estrada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Estrada, D.F., Kumar, A., Campomizzi, C.S., Jay, N. (2021). Crystal Structures of Drug-Metabolizing CYPs. In: Nagar, S., Argikar, U.A., Tweedie, D. (eds) Enzyme Kinetics in Drug Metabolism. Methods in Molecular Biology, vol 2342. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1554-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1554-6_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1553-9

  • Online ISBN: 978-1-0716-1554-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics