Skip to main content

Case Study 8: Status of the Structural Mass Action Kinetic Model of P-gp-Mediated Transport Through Confluent Cell Monolayers

  • Protocol
  • First Online:
Enzyme Kinetics in Drug Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2342))

Abstract

In the first edition of this book, we presented the basics of explicitly incorporating the lipid biochemistry into a confluent cell monolayer transport model and the novel findings of this model up to 2013, including the use of global optimization to fit the elementary rate constants and the efflux active P-glycoprotein (P-gp) membrane concentrations for the transport of four P-gp substrates across MDCKII-hMDR1-NKI confluent cell monolayers. This chapter is an update on that model, which has been focused primarily on discovering how microvilli morphology regulates the efflux active P-gp and the existence of, as yet, unidentified uptake transporters of P-gp substrates in all of the commonly used P-gp expressing cell lines used in the pharmaceutical industry, thereby adding new players to DDI predictions and IVIVE. The structural mass action kinetic model uses the general mass action reactions for P-gp binding and efflux, with the membrane structural parameters for the confluent cell monolayer to predict drug transport over time. Binding of drug to P-gp occurs within the cytosolic monolayer of the apical membrane, according to (a) the molar partition coefficient of the drug to the cytosolic monolayer and (b) the association rate constant, k1 (M−1 s−1), of the drug from the basolateral or apical outer monolayers into the P-gp binding site. Release of substrate from P-gp back into the cytosolic monolayer occurs with a dissociation rate constant kr (s−1) or, much less frequently, into the apical aqueous chamber with an efflux rate constant k2 (s−1). The model fits the efflux active P-gp concentration, T(0), i.e., the P-gp whose effluxed drug actually reaches the apical aqueous chamber, as opposed to the majority of P-gp whose effluxed drug is reabsorbed back into the same or neighboring microvilli prior to reaching the apical aqueous chamber. Efflux active P-gp largely resides near the tips of the microvilli. We have shown using kinetics and structured illumination microscopy that: (a) efflux active P-gp is controlled by microvilli morphology; (b) there are apical (AT) and basolateral (BT) uptake transporters for P-gp substrates in most, if not all, P-gp expressing cell lines used in the pharmaceutical industry, which exist, but which remain unidentified; (c) the lab-to-lab variability in P-gp IC50 values observed in the P-gp IC50 initiative was due to the conflated inhibition of P-gp and the basolateral digoxin uptake transporters by all 15 P-gp substrates tested in that study; (d) even the IC50 values for P-gp inhibition alone do not obey the Cheng-Prusoff relationship; (e) the fitted elementary rate constants and the molecular dissociation constant Ki for this kinetic model are system independent; and (f) the time dependence of product formation for these confluent cell monolayers is correlated with the P-gp Vmax/Km, when defined by its fitted elementary rate constants and uptake transporter clearances, without any steady-state assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heikkinen AT, Korjamo T, Mönkkönen J (2009) Modelling of drug disposition kinetics in in vitro intestinal absorption cell models. Basic Clin Pharmacol Toxicol 106:180–188

    Article  PubMed  Google Scholar 

  2. Zamek-Gliszczynski MJ, Lee CA, Poirier A et al (2013) ITC recommendations for transporter kinetic parameter estimation and translational modeling of transport-mediated PK and DDIs in humans. Clin Pharmacol Ther 94:64–79

    Article  CAS  PubMed  Google Scholar 

  3. Bentz J, Tran TT, Polli JW et al (2005) The steady-state Michaelis-Menten analysis of P-glycoprotein mediated transport through a confluent cell monolayer cannot predict the correct Michaelis constant km. Pharm Res 22:1667–1677

    Article  CAS  PubMed  Google Scholar 

  4. Sun H, Pang KS (2008) Permeability, transport, and metabolism of solutes in Caco-2 cell monolayers: a theoretical study. Drug Metab Dispos 36:102–123

    Article  CAS  PubMed  Google Scholar 

  5. Marrink J-J, Berendsen HJC (1994) Simulation of water transport through a lipid membrane. J Phys Chem 98:4155–4168

    Article  CAS  Google Scholar 

  6. Houston JB, Kenworthy KE, Galetin A (2007) Typical and atypical enzyme kinetics. In: Lee JS, Obach RS, Fisher MB (eds) Drug metabolizing enzymes: cytochrome P450 and other enzymes in drug discovery and development. Informa Healthcare, London, pp 211–254.11

    Google Scholar 

  7. Bentz J, O’Connor MP, Bednarczyk D et al (2013) Variability in P-glycoprotein inhibitory potency (IC50) using various in vitro experimental systems: implications for universal digoxin DDI risk assessment decision criteria. Drug Metab Dispos 41:1347–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chaudhry A, Chung G, Lynn A et al (2018) Derivation of a system-independent Ki for P-glycoprotein mediated digoxin transport from system-dependent IC50 data. Drug Metab Dispos 46(3):279–290. https://doi.org/10.1124/dmd.117.075606

    Article  PubMed  Google Scholar 

  9. Ellens H, Meng H, Le Marchand S, Bentz J (2018) Mechanistic kinetic modeling generates system-independent P-glycoprotein mediated transport elementary rate constants for inhibition and, in combination with 3D SIM microscopy, elucidates the importance of microvilli morphology on P-glycoprotein mediated efflux activity. Expert Opin Drug Metab Toxicol 14(6):571–584. https://doi.org/10.1080/17425255.2018.1480720. Epub 2018 Jun 7. Review

    Article  CAS  PubMed  Google Scholar 

  10. Tran TT, Mittal A, Aldinger T et al (2005) The elementary mass action rate constants of P-gp transport for a confluent monolayer of MDCK-hMDR1 cells. Biophys J 88:715–738

    Article  CAS  PubMed  Google Scholar 

  11. Acharya P, Polli JW, Ayrton A et al (2008) Kinetic identification of membrane transporters that assist P-gp mediated transport of digoxin and loperamide through a confluent monolayer of MDCK-hMDR1 cells. Drug Metab Dispos 36:452–460

    Article  CAS  PubMed  Google Scholar 

  12. Agnani D, Acharya P, Martinez E et al (2011) Fitting the elementary rate constants of the P-gp transporter network in the hMDR1-MDCKII confluent cell monolayer using a particle swarm algorithm. PLoS One 6:e25086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lumen AA, Li L, Li J et al (2013) Transport inhibition of digoxin using several common P-gp expressing cell lines is not necessarily reporting only on inhibitor binding to P-gp. PLoS One 8(8):e69394. https://doi.org/10.1371/journal.pone.0069394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Meng Z, Ellens H, Bentz J (2017a) Extrapolation of elementary rate constants of P-glycoprotein mediated transport from MDCKII-hMDR1-NKI to Caco-2 cells. Drug Metab Dispos 45:190–197. https://doi.org/10.1124/dmd.116.072140

    Article  CAS  PubMed  Google Scholar 

  15. Meng Z, Le Marchand SJ, Agnani D, Szapacs ME, Ellens H, Bentz J (2017b) Microvilli morphology can affect efflux active P-glycoprotein in confluent MDCKII-hMDR1-NKI and Caco-2 cell monolayers. Drug Metab Dispos 45:145–151. https://doi.org/10.1124/dmd.116.072157

    Article  CAS  PubMed  Google Scholar 

  16. Korzekwa KR, Nagar S, Tucker J et al (2012) Models to predict unbound intracellular drug concentrations in the presence of transporters. Drug Metab Dispos 40:865–876

    Article  CAS  PubMed  Google Scholar 

  17. Kulkarni P, Korzekwa K, Nagar S (2020) A hybrid model to evaluate the impact of active uptake transport on hepatic distribution of atorvastatin in rats. Xenobiotica 50(5):536–544

    Article  CAS  PubMed  Google Scholar 

  18. Acharya P, Tran TT, Polli JW et al (2006) P-glycoprotein (P-gp) expressed in a confluent monolayer of hMDR1-MDCKII cells has more than one efflux pathway with cooperative binding sites. Biochemistry 45:15505–15519

    Article  CAS  PubMed  Google Scholar 

  19. Loo TW, Clarke DM (2005) Recent progress in understanding the mechanism of P-glycoprotein-mediated drug efflux. J Membr Biol 206:173–185

    Article  CAS  PubMed  Google Scholar 

  20. Lugo MR, Sharom FJ (2005) Interaction of LDS-751 and rhodamine 123 with P-glycoprotein: evidence for simultaneous binding of both drugs. Biochemistry 44:14020–14029

    Article  CAS  PubMed  Google Scholar 

  21. Evers R, Kool M, Smith AJ et al (2000) Inhibitory effect of the reversal agents V-104, GF120918 and Pluronic L61 on MDR1 P-gp-, MRP1- and MRP2-mediated transport. Br J Cancer 83:366–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tran TT, Mittal A, Gales T et al (2004) An exact kinetic analysis of passive transport across a polarized confluent MDCK cell monolayer modeled as a single barrier. J Pharm Sci 93:2108–2123

    Article  CAS  PubMed  Google Scholar 

  23. Chen Y, Agarwal S, Shaik NM et al (2009) P-glycoprotein and breast cancer resistance protein influence brain distribution of dasatinib. J Pharmacol Exp Ther 330:956–963

    Article  CAS  PubMed  Google Scholar 

  24. Taub ME, Mease K, Sane RS et al (2011) Digoxin is not a substrate for organic anion-transporting polypeptide transporters OATP1A2, OATP1B1, OATP1B3, and OATP2B1 but is a substrate for a sodium-dependent transporter expressed in HEK293 cells. Drug Metab Dispos 39:2093–2102

    Article  CAS  PubMed  Google Scholar 

  25. Lumen AA, Acharya P, Polli JW et al (2010) If the KI is defined by the free energy of binding to P-glycoprotein, which kinetic parameters define the IC50 for the Madin-Darby canine kidney II cell line overexpressing human multidrug resistance 1 confluent cell monolayer? Drug Metab Dispos 38:260–269

    Article  CAS  PubMed  Google Scholar 

  26. Abreu MS, Estronca LM, Moreno MJ et al (2003) Binding of a fluorescent lipid amphiphile to albumin and its transfer to lipid bilayer membranes. Biophys J 84:386–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bentz J (2020) Kinetic design for measuring drug cytosolic concentrations, uptake transporter clearances and drug partitioning into the cytosolic monolayer during trans-cellular transport through P-gp expressing confluent cell monolayers. In: Rosania G, Thurber G, Keswani RK (eds) Quantitative analysis of cellular drug transport, disposition, and delivery, Methods in pharmacology and toxicology. Springer Science+Business Media LLC, Berlin

    Google Scholar 

  28. Senior AE, Sashi N, Weber J (2000) Rate acceleration of ATP hydrolysis by F1Fo-ATP synthase. J Exp Biol 203:35–40

    Article  CAS  PubMed  Google Scholar 

  29. Anderle P, Niederer E, Rubas W et al (1998) P-glycoprotein (P-gp) mediated efflux in Caco-2 cell monolayers: the influence of culturing conditions and drug exposure on P-gp expression levels. J Pharm Sci 87(6):757–762. https://doi.org/10.1021/js970372e

    Article  CAS  PubMed  Google Scholar 

  30. Hunter J, Jepson MA, Tsuruo T, Simmons NL, Hirst BH (1993) Functional expression of P-glycoprotein in apical membranes of human intestinal Caco-2 cells. Kinetics of vinblastine secretion and interaction with modulators. J Biol Chem 268(20):14991–14997

    Article  CAS  PubMed  Google Scholar 

  31. Ellens H, Deng S, Coleman J, Bentz J, Taub ME, Ragueneau-Majlessi I, Chung SP, Herédi-Szabó K, Neuhoff S, Palm J, Balimane P, Zhang L, Jamei M, Hanna I, O'Connor M, Bednarczyk D, Forsgard M, Chu X, Funk C, Guo A, Hillgren KM, Li L, Pak AY, Perloff ES, Rajaraman G, Salphati L, Taur JS, Weitz D, Wortelboer HM, Xia CQ, Xiao G, Yamagata T, Lee CA (2013) Application of receiver operating characteristic analysis to refine the prediction of potential digoxin drug interactions. Drug Metab Dispos 41:1367–1374. https://doi.org/10.1124/dmd.112.050542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. O’Connor MP, Lee C, Ellens H, Bentz J (2014) A novel application of t-statistics to objectively assess the quality of IC50 fits for P-glycoprotein and other transporters. Pharmacol Res Perspect 2(5):e00078. https://doi.org/10.1002/prp2.78

    Article  CAS  Google Scholar 

  33. Tang F, Horie K, Borchardt RT (2002) Are MDCK cells transfected with the human MDR1 gene a good model of the human intestinal mucosa? Pharm Res 19:765–772

    Article  CAS  PubMed  Google Scholar 

  34. Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (IC50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Article  CAS  PubMed  Google Scholar 

  35. Lowes S, Cavet ME, Simmons NL (2003) Evidence for a non-MDR1 component in digoxin secretion by human intestinal Caco-2 epithelial layers. Eur J Pharmacol 458(1–2):49–56. https://doi.org/10.1016/s0014-2999(02)02764-4

    Article  CAS  PubMed  Google Scholar 

  36. Troutman MD, Thakker DR (2003) Rhodamine 123 requires carrier-mediated influx for its activity as a P-glycoprotein substrate in Caco-2 cells. Pharm Res 20(8):1192–1199. https://doi.org/10.1023/a:1025096930604

    Article  CAS  PubMed  Google Scholar 

  37. Pan G, Elmquist WF (2007) Mitoxantrone permeability in MDCKII cells is influenced by active influx transport. Mol Pharm 4(3):475–483. Epub 2007 Mar 28. PMID: 17388607

    Article  CAS  PubMed  Google Scholar 

  38. Johnson KA, Goody RS (2012) The original Michaelis constant: translation of the 1913 Michaelis-Menten paper. Biochemistry 50:8264–8269. [PubMed: 21888353]

    Article  Google Scholar 

  39. Schnell S, Mendoza C (1997) Closed-form solution for time-dependent enzyme kinetics. J Theor Biol 187:207–212

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joe Bentz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bentz, J., Ellens, H. (2021). Case Study 8: Status of the Structural Mass Action Kinetic Model of P-gp-Mediated Transport Through Confluent Cell Monolayers. In: Nagar, S., Argikar, U.A., Tweedie, D. (eds) Enzyme Kinetics in Drug Metabolism. Methods in Molecular Biology, vol 2342. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1554-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1554-6_27

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1553-9

  • Online ISBN: 978-1-0716-1554-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics