Skip to main content

Enzyme Kinetics of Uridine Diphosphate Glucuronosyltransferases (UGTs)

  • Protocol
  • First Online:
Enzyme Kinetics in Drug Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2342))

Abstract

Glucuronidation, catalyzed by uridine diphosphate glucuronosyltransferases (UGTs), is an important process for the metabolism and clearance of many lipophilic chemicals, including drugs, environmental chemicals, and endogenous compounds. Glucuronidation is a bisubstrate reaction that requires the aglycone and the cofactor, UDP-GlcUA. Accumulating evidence suggests that the bisubstrate reaction follows a compulsory-order ternary mechanism. To simplify the kinetic modeling of glucuronidation reactions in vitro, UDP-GlcUA is usually added to incubations in large excess. Many factors have been shown to influence UGT activity and kinetics in vitro, and these must be accounted for during experimental design and data interpretation. While the assessment of drug–drug interactions resulting from UGT inhibition has been challenging in the past, the increasing availability of UGT enzyme-selective substrate and inhibitor “probes” provides the prospect for more reliable reaction phenotyping and assessment of drug–drug interaction potential. Although extrapolation of the in vitro intrinsic clearance of a glucuronidated drug often underpredicts in vivo clearance, careful selection of in vitro experimental conditions and inclusion of extrahepatic glucuronidation may improve the predictivity of in vitro–in vivo extrapolation. Physiologically based pharmacokinetic (PBPK) modeling has also shown to be of value for predicting PK of drugs eliminated by glucuronidation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miners JO, Mackenzie PI (1991) Drug glucuronidation in humans. Pharmacol Ther 51(3):347–369. doi:0163-7258(91)90065-T [pii]

    Article  CAS  PubMed  Google Scholar 

  2. Argikar UA (2012) Unusual glucuronides. Drug Metab Dispos 40(7):1239–1251. https://doi.org/10.1124/dmd.112.045096

    Article  CAS  PubMed  Google Scholar 

  3. Luukkanen L, Taskinen J, Kurkela M, Kostiainen R, Hirvonen J, Finel M (2005) Kinetic characterization of the 1A subfamily of recombinant human UDP-glucuronosyltransferases. Drug Metab Dispos 33(7):1017–1026. https://doi.org/10.1124/dmd.105.004093. dmd.105.004093 [pii]

    Article  CAS  PubMed  Google Scholar 

  4. Mackenzie PI, Bock KW, Burchell B, Guillemette C, Ikushiro S, Iyanagi T, Miners JO, Owens IS, Nebert DW (2005) Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenet Genomics 15(10):677–685. doi:01213011-200510000-00001 [pii]

    Article  CAS  PubMed  Google Scholar 

  5. Miners JO, Mackenzie PI, Knights KM (2010) The prediction of drug-glucuronidation parameters in humans: UDP-glucuronosyltransferase enzyme-selective substrate and inhibitor probes for reaction phenotyping and in vitro-in vivo extrapolation of drug clearance and drug-drug interaction potential. Drug Metab Rev 42(1):196–208. https://doi.org/10.3109/03602530903210716

    Article  CAS  PubMed  Google Scholar 

  6. Remmel RP, Zhou J, Argikar UA (2008) UDP-glucuronosyltransferases. In: Drugs and the pharmaceutical sciences, vol 186. Handbook of drug metabolism, 2nd edn. Informa Healthcare, London, pp 137–177

    Google Scholar 

  7. Miners JO, Smith PA, Sorich MJ, McKinnon RA, Mackenzie PI (2004) Predicting human drug glucuronidation parameters: application of in vitro and in silico modeling approaches. Annu Rev Pharmacol Toxicol 44:1–25. https://doi.org/10.1146/annurev.pharmtox.44.101802.121546

    Article  CAS  PubMed  Google Scholar 

  8. Kerdpin O, Mackenzie PI, Bowalgaha K, Finel M, Miners JO (2009) Influence of N-terminal domain histidine and proline residues on the substrate selectivities of human UDP-glucuronosyltransferase 1A1, 1A6, 1A9, 2B7, and 2B10. Drug Metab Dispos 37(9):1948–1955. https://doi.org/10.1124/dmd.109.028225. dmd.109.028225 [pii]

    Article  CAS  PubMed  Google Scholar 

  9. Kubota T, Lewis BC, Elliot DJ, Mackenzie PI, Miners JO (2007) Critical roles of residues 36 and 40 in the phenol and tertiary amine aglycone substrate selectivities of UDP-glucuronosyltransferases 1A3 and 1A4. Mol Pharmacol 72(4):1054–1062. https://doi.org/10.1124/mol.107.037952. mol.107.037952 [pii]

    Article  CAS  PubMed  Google Scholar 

  10. Finel M, Kurkela M (2008) The UDP-glucuronosyltransferases as oligomeric enzymes. Curr Drug Metab 9(1):70–76

    Article  CAS  PubMed  Google Scholar 

  11. Uchaipichat V, Galetin A, Houston JB, Mackenzie PI, Williams JA, Miners JO (2008) Kinetic modeling of the interactions between 4-methylumbelliferone, 1-naphthol, and zidovudine glucuronidation by udp-glucuronosyltransferase 2B7 (UGT2B7) provides evidence for multiple substrate binding and effector sites. Mol Pharmacol 74(4):1152–1162. https://doi.org/10.1124/mol.108.048645. mol.108.048645 [pii]

    Article  CAS  PubMed  Google Scholar 

  12. Miners JO, Knights KM, Houston JB, Mackenzie PI (2006) In vitro-in vivo correlation for drugs and other compounds eliminated by glucuronidation in humans: pitfalls and promises. Biochem Pharmacol 71(11):1531–1539. https://doi.org/10.1016/j.bcp.2005.12.019. S0006-2952(05)00848-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  13. Walsky RL, Bauman JN, Bourcier K, Giddens G, Lapham K, Negahban A, Ryder TF, Obach RS, Hyland R, Goosen TC (2012) Optimized assays for human UDP-glucuronosyltransferase (UGT) activities: altered alamethicin concentration and utility to screen for UGT inhibitors. Drug Metab Dispos 40(5):1051–1065. https://doi.org/10.1124/dmd.111.043117. dmd.111.043117 [pii]

    Article  CAS  PubMed  Google Scholar 

  14. Badee J, Qiu N, Parrott N, Collier AC, Schmidt S, Fowler S (2019) Optimization of experimental conditions of automated glucuronidation assays in human liver microsomes using a cocktail approach and ultra-high performance liquid chromatography-tandem mass spectrometry. Drug Metab Dispos 47(2):124–134. https://doi.org/10.1124/dmd.118.084301

    Article  CAS  PubMed  Google Scholar 

  15. Boase S, Miners JO (2002) In vitro-in vivo correlations for drugs eliminated by glucuronidation: investigations with the model substrate zidovudine. Br J Clin Pharmacol 54(5):493–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Engtrakul JJ, Foti RS, Strelevitz TJ, Fisher MB (2005) Altered AZT (3′-azido-3′-deoxythymidine) glucuronidation kinetics in liver microsomes as an explanation for underprediction of in vivo clearance: comparison to hepatocytes and effect of incubation environment. Drug Metab Dispos 33(11):1621–1627. https://doi.org/10.1124/dmd.105.005058. dmd.105.005058 [pii]

    Article  CAS  PubMed  Google Scholar 

  17. Gunduz M, Argikar UA, Baeschlin D, Ferreira S, Hosagrahara V, Harriman S (2010) Identification of a novel N-carbamoyl glucuronide: in vitro, in vivo, and mechanistic studies. Drug Metab Dispos 38(3):361–367. https://doi.org/10.1124/dmd.109.030650. dmd.109.030650 [pii]

    Article  CAS  PubMed  Google Scholar 

  18. Miners JO, Valente L, Lillywhite KJ, Mackenzie PI, Burchell B, Baguley BC, Kestell P (1997) Preclinical prediction of factors influencing the elimination of 5,6-dimethylxanthenone-4-acetic acid, a new anticancer drug. Cancer Res 57(2):284–289

    CAS  PubMed  Google Scholar 

  19. Chang JH, Yoo P, Lee T, Klopf W, Takao D (2009) The role of pH in the glucuronidation of raloxifene, mycophenolic acid and ezetimibe. Mol Pharm 6(4):1216–1227. https://doi.org/10.1021/mp900065b

    Article  CAS  PubMed  Google Scholar 

  20. Zhang H, Soikkeli A, Tolonen A, Rousu T, Hirvonen J, Finel M (2012) Highly variable pH effects on the interaction of diclofenac and indomethacin with human UDP-glucuronosyltransferases. Toxicol In Vitro 26(8):1286–1293. https://doi.org/10.1016/j.tiv.2012.01.005

    Article  CAS  PubMed  Google Scholar 

  21. Rowland A, Mackenzie PI, Miners JO (2015) Transporter-mediated uptake of UDP-glucuronic acid by human liver microsomes: assay conditions, kinetics, and inhibition. Drug Metab Dispos 43(1):147–153. https://doi.org/10.1124/dmd.114.060509

    Article  CAS  PubMed  Google Scholar 

  22. Soars MG, Ring BJ, Wrighton SA (2003) The effect of incubation conditions on the enzyme kinetics of udp-glucuronosyltransferases. Drug Metab Dispos 31(6):762–767. doi:31/6/762[pii]

    Article  CAS  PubMed  Google Scholar 

  23. Fisher MB, Paine MF, Strelevitz TJ, Wrighton SA (2001) The role of hepatic and extrahepatic UDP-glucuronosyltransferases in human drug metabolism. Drug Metab Rev 33(3–4):273–297. https://doi.org/10.1081/DMR-120000653

    Article  CAS  PubMed  Google Scholar 

  24. Fisher MB, Campanale K, Ackermann BL, VandenBranden M, Wrighton SA (2000) In vitro glucuronidation using human liver microsomes and the pore-forming peptide alamethicin. Drug Metab Dispos 28(5):560–566

    CAS  PubMed  Google Scholar 

  25. Uchaipichat V, Mackenzie PI, Guo XH, Gardner-Stephen D, Galetin A, Houston JB, Miners JO (2004) Human udp-glucuronosyltransferases: isoform selectivity and kinetics of 4-methylumbelliferone and 1-naphthol glucuronidation, effects of organic solvents, and inhibition by diclofenac and probenecid. Drug Metab Dispos 32(4):413–423. https://doi.org/10.1124/dmd.32.4.413.32/4/413

    Article  CAS  PubMed  Google Scholar 

  26. Oleson L, Court MH (2008) Effect of the beta-glucuronidase inhibitor saccharolactone on glucuronidation by human tissue microsomes and recombinant UDP-glucuronosyltransferases. J Pharm Pharmacol 60(9):1175–1182. https://doi.org/10.1211/jpp.60.9.0009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Argikar UA (2018) Saccharolactone: the history, the myth, and the practice. Curr Drug Metab 19(4):304–309. https://doi.org/10.2174/1389200219666171229232007

    Article  CAS  PubMed  Google Scholar 

  28. Chauret N, Gauthier A, Nicoll-Griffith DA (1998) Effect of common organic solvents on in vitro cytochrome P450-mediated metabolic activities in human liver microsomes. Drug Metab Dispos 26(1):1–4

    CAS  PubMed  Google Scholar 

  29. Argikar UA, Liang G, Bushee JL, Hosagrahara VP, Lee W (2011) Evaluation of pharmaceutical excipients as cosolvents in 4-methyl umbelliferone glucuronidation in human liver microsomes: applications for compounds with low solubility. Drug Metab Pharmacokinet 26(1):102–106. https://doi.org/10.2133/dmpk.dmpk-10-sh-086

    Article  CAS  PubMed  Google Scholar 

  30. Cappiello M, Giuliani L, Pacifici GM (1991) Distribution of UDP-glucuronosyltransferase and its endogenous substrate uridine 5′-diphosphoglucuronic acid in human tissues. Eur J Clin Pharmacol 41(4):345–350

    Article  CAS  PubMed  Google Scholar 

  31. Chau N, Elliot DJ, Lewis BC, Burns K, Johnston MR, Mackenzie PI, Miners JO (2014) Morphine glucuronidation and glucosidation represent complementary metabolic pathways that are both catalyzed by UDP-glucuronosyltransferase 2B7: kinetic, inhibition, and molecular modeling studies. J Pharmacol Exp Ther 349(1):126–137. https://doi.org/10.1124/jpet.113.212258

    Article  CAS  PubMed  Google Scholar 

  32. Court MH, Duan SX, von Moltke LL, Greenblatt DJ, Patten CJ, Miners JO, Mackenzie PI (2001) Interindividual variability in acetaminophen glucuronidation by human liver microsomes: identification of relevant acetaminophen UDP-glucuronosyltransferase isoforms. J Pharmacol Exp Ther 299(3):998–1006

    CAS  PubMed  Google Scholar 

  33. Ouzzine M, Antonio L, Burchell B, Netter P, Fournel-Gigleux S, Magdalou J (2000) Importance of histidine residues for the function of the human liver UDP-glucuronosyltransferase UGT1A6: evidence for the catalytic role of histidine 370. Mol Pharmacol 58(6):1609–1615

    Article  CAS  PubMed  Google Scholar 

  34. Yamamura N, Imura-Miyoshi K, Naganuma H (2000) Panipenum, a carbapenem antibiotic, increases the level of hepatic UDP-glucuronic acid in rats. Drug Metab Dispos 28(12):1484–1486

    CAS  PubMed  Google Scholar 

  35. Zakim D, Goldenberg J, Vessey DA (1973) Effects of metals on the properties of hepatic microsomal uridine diphosphate glucuronyltransferase. Biochemistry 12(21):4068–4074

    Article  CAS  PubMed  Google Scholar 

  36. Walia G, Smith AD, Riches Z, Collier AC, Coughtrie MWH (2018) The effects of UDP-sugars, UDP and Mg(2+)on uridine diphosphate glucuronosyltransferase activity in human liver microsomes. Xenobiotica 48(9):882–890. https://doi.org/10.1080/00498254.2017.1376260

    Article  CAS  PubMed  Google Scholar 

  37. Gill KL, Houston JB, Galetin A (2012) Characterization of in vitro glucuronidation clearance of a range of drugs in human kidney microsomes: comparison with liver and intestinal glucuronidation and impact of albumin. Drug Metab Dispos 40(4):825–835. https://doi.org/10.1124/dmd.111.043984. dmd.111.043984 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kilford PJ, Stringer R, Sohal B, Houston JB, Galetin A (2009) Prediction of drug clearance by glucuronidation from in vitro data: use of combined cytochrome P450 and UDP-glucuronosyltransferase cofactors in alamethicin-activated human liver microsomes. Drug Metab Dispos 37(1):82–89. https://doi.org/10.1124/dmd.108.023853. dmd.108.023853 [pii]

    Article  CAS  PubMed  Google Scholar 

  39. Pattanawongsa A, Nair PC, Rowland A, Miners JO (2016) Human UDP-glucuronosyltransferase (UGT) 2B10: validation of cotinine as a selective probe substrate, inhibition by UGT enzyme-selective inhibitors and antidepressant and antipsychotic drugs, and structural determinants of enzyme inhibition. Drug Metab Dispos 44(3):378–388. https://doi.org/10.1124/dmd.115.068213

    Article  CAS  PubMed  Google Scholar 

  40. Raungrut P, Uchaipichat V, Elliot DJ, Janchawee B, Somogyi AA, Miners JO (2010) In vitro-in vivo extrapolation predicts drug-drug interactions arising from inhibition of codeine glucuronidation by dextropropoxyphene, fluconazole, ketoconazole, and methadone in humans. J Pharmacol Exp Ther 334(2):609–618. https://doi.org/10.1124/jpet.110.167916. jpet.110.167916 [pii]

    Article  CAS  PubMed  Google Scholar 

  41. Rowland A, Gaganis P, Elliot DJ, Mackenzie PI, Knights KM, Miners JO (2007) Binding of inhibitory fatty acids is responsible for the enhancement of UDP-glucuronosyltransferase 2B7 activity by albumin: implications for in vitro-in vivo extrapolation. J Pharmacol Exp Ther 321(1):137–147. https://doi.org/10.1124/jpet.106.118216. jpet.106.118216 [pii]

    Article  CAS  PubMed  Google Scholar 

  42. Rowland A, Knights KM, Mackenzie PI, Miners JO (2008) The “albumin effect” and drug glucuronidation: bovine serum albumin and fatty acid-free human serum albumin enhance the glucuronidation of UDP-glucuronosyltransferase (UGT) 1A9 substrates but not UGT1A1 and UGT1A6 activities. Drug Metab Dispos 36(6):1056–1062. https://doi.org/10.1124/dmd.107.019885. dmd.107.019885 [pii]

    Article  CAS  PubMed  Google Scholar 

  43. Uchaipichat V, Winner LK, Mackenzie PI, Elliot DJ, Williams JA, Miners JO (2006) Quantitative prediction of in vivo inhibitory interactions involving glucuronidated drugs from in vitro data: the effect of fluconazole on zidovudine glucuronidation. Br J Clin Pharmacol 61(4):427–439. https://doi.org/10.1111/j.1365-2125.2006.02588.x. BCP2588 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tsoutsikos P, Miners JO, Stapleton A, Thomas A, Sallustio BC, Knights KM (2004) Evidence that unsaturated fatty acids are potent inhibitors of renal UDP-glucuronosyltransferases (UGT): kinetic studies using human kidney cortical microsomes and recombinant UGT1A9 and UGT2B7. Biochem Pharmacol 67(1):191–199

    Article  CAS  PubMed  Google Scholar 

  45. Bushee JL, Liang G, Dunne CE, Harriman SP, Argikar UA (2014) Identification of saturated and unsaturated fatty acids released during microsomal incubations. Xenobiotica 44(8):687–695. https://doi.org/10.3109/00498254.2014.884253

    Article  CAS  PubMed  Google Scholar 

  46. Manevski N, Moreolo PS, Yli-Kauhaluoma J, Finel M (2011) Bovine serum albumin decreases Km values of human UDP-glucuronosyltransferases 1A9 and 2B7 and increases Vmax values of UGT1A9. Drug Metab Dispos 39(11):2117–2129. https://doi.org/10.1124/dmd.111.041418. dmd.111.041418 [pii]

    Article  CAS  PubMed  Google Scholar 

  47. Pattanawongsa A, Chau N, Rowland A, Miners JO (2015) Inhibition of human UDP-glucuronosyltransferase enzymes by canagliflozin and dapagliflozin: implications for drug-drug interactions. Drug Metab Dispos 43(10):1468–1476. https://doi.org/10.1124/dmd.115.065870

    Article  CAS  PubMed  Google Scholar 

  48. Nagar S, Korzekwa K (2012) Commentary: nonspecific protein binding versus membrane partitioning: it is not just semantics. Drug Metab Dispos 40(9):1649–1652. https://doi.org/10.1124/dmd.112.046599

    Article  CAS  PubMed  Google Scholar 

  49. Rowland A, Knights KM, Mackenzie PI, Miners JO (2009) Characterization of the binding of drugs to human intestinal fatty acid binding protein (IFABP): potential role of IFABP as an alternative to albumin for in vitro-in vivo extrapolation of drug kinetic parameters. Drug Metab Dispos 37(7):1395–1403. https://doi.org/10.1124/dmd.109.027656. dmd.109.027656 [pii]

    Article  CAS  PubMed  Google Scholar 

  50. Potrepka RF, Spratt JL (1972) A study on the enzymatic mechanism of guinea-pig hepatic-microsomal bilirubin glucuronyl transferase. Eur J Biochem 29(3):433–439

    Article  CAS  PubMed  Google Scholar 

  51. Vessey DA, Zakim D (1972) Regulation of microsomal enzymes by phospholipids. V Kinetic studies of hepatic uridine diphosphate-glucuronyltransferase. J Biol Chem 247(10):3023–3028

    Article  CAS  PubMed  Google Scholar 

  52. Sanchez E, Tephly TR (1975) Morphine metabolism. IV. Studies on the mechanism of morphine: uridine diphosphoglucuronyltransferase and its activation by bilirubin. Mol Pharmacol 11(5):613–620

    CAS  PubMed  Google Scholar 

  53. Rao ML, Rao GS, Breuer H (1976) Investigations on the kinetic properties of estrone glucuronyltransferase from pig kidney. Biochim Biophys Acta 452(1):89–100

    Article  CAS  PubMed  Google Scholar 

  54. Koster AS, Noordhoek J (1983) Kinetic properties of the rat intestinal microsomal 1-naphthol:UDP-glucuronosyl transferase. Inhibition by UDP and UDP-N-acetylglucosamine. Biochim Biophys Acta 761(1):76–85. doi:0304-4165(83)90364-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  55. Falany CN, Green MD, Tephly TR (1987) The enzymatic mechanism of glucuronidation catalyzed by two purified rat liver steroid UDP-glucuronosyltransferases. J Biol Chem 262(3):1218–1222

    Article  CAS  PubMed  Google Scholar 

  56. Matern H, Lappas N, Matern S (1991) Isolation and characterization of hyodeoxycholic-acid: UDP-glucuronosyltransferase from human liver. Eur J Biochem 200(2):393–400

    Article  CAS  PubMed  Google Scholar 

  57. Yin H, Bennett G, Jones JP (1994) Mechanistic studies of uridine diphosphate glucuronosyltransferase. Chem Biol Interact 90(1):47–58. doi:0009-2797(94)90110-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  58. Manevski N, Yli-Kauhaluoma J, Finel M (2012) UDP-glucuronic acid binds first and the aglycone substrate binds second to form a ternary complex in UGT1A9-catalyzed reactions, in both the presence and absence of bovine serum albumin. Drug Metab Dispos 40(11):2192–2203. https://doi.org/10.1124/dmd.112.047746

    Article  CAS  PubMed  Google Scholar 

  59. Fujiwara R, Nakajima M, Yamanaka H, Katoh M, Yokoi T (2008) Product inhibition of UDP-glucuronosyltransferase (UGT) enzymes by UDP obfuscates the inhibitory effects of UGT substrates. Drug Metab Dispos 36(2):361–367. https://doi.org/10.1124/dmd.107.018705

    Article  CAS  PubMed  Google Scholar 

  60. Zhou J, Tracy TS, Remmel RP (2010) Glucuronidation of dihydrotestosterone and trans-androsterone by recombinant UDP-glucuronosyltransferase (UGT) 1A4: evidence for multiple UGT1A4 aglycone binding sites. Drug Metab Dispos 38(3):431–440. https://doi.org/10.1124/dmd.109.028712. dmd.109.028712 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhou J, Tracy TS, Remmel RP (2011) Correlation between bilirubin glucuronidation and estradiol-3-gluronidation in the presence of model UDP-glucuronosyltransferase 1A1 substrates/inhibitors. Drug Metab Dispos 39(2):322–329. https://doi.org/10.1124/dmd.110.035030. dmd.110.035030 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Stone AN, Mackenzie PI, Galetin A, Houston JB, Miners JO (2003) Isoform selectivity and kinetics of morphine 3- and 6-glucuronidation by human udp-glucuronosyltransferases: evidence for atypical glucuronidation kinetics by UGT2B7. Drug Metab Dispos 31(9):1086–1089. https://doi.org/10.1124/dmd.31.9.1086.31/9/1086. [pii]

    Article  CAS  PubMed  Google Scholar 

  63. Ohno S, Kawana K, Nakajin S (2008) Contribution of UDP-glucuronosyltransferase 1A1 and 1A8 to morphine-6-glucuronidation and its kinetic properties. Drug Metab Dispos 36(4):688–694. https://doi.org/10.1124/dmd.107.019281. dmd.107.019281 [pii]

    Article  CAS  PubMed  Google Scholar 

  64. Iwuchukwu OF, Nagar S (2008) Resveratrol (trans-resveratrol, 3,5,4′-trihydroxy-trans-stilbene) glucuronidation exhibits atypical enzyme kinetics in various protein sources. Drug Metab Dispos 36(2):322–330. https://doi.org/10.1124/dmd.107.018788. dmd.107.018788 [pii]

    Article  CAS  PubMed  Google Scholar 

  65. Green MD, Tephly TR (1996) Glucuronidation of amines and hydroxylated xenobiotics and endobiotics catalyzed by expressed human UGT1.4 protein. Drug Metab Dispos 24(3):356–363

    CAS  PubMed  Google Scholar 

  66. Williams JA, Ring BJ, Cantrell VE, Campanale K, Jones DR, Hall SD, Wrighton SA (2002) Differential modulation of UDP-glucuronosyltransferase 1A1 (UGT1A1)-catalyzed estradiol-3-glucuronidation by the addition of UGT1A1 substrates and other compounds to human liver microsomes. Drug Metab Dispos 30(11):1266–1273

    Article  CAS  PubMed  Google Scholar 

  67. Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, Peterkin V, Koup JR, Ball SE (2004) Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos 32(11):1201–1208. https://doi.org/10.1124/dmd.104.000794. dmd.104.000794 [pii]

    Article  CAS  PubMed  Google Scholar 

  68. Kiang TK, Ensom MH, Chang TK (2005) UDP-glucuronosyltransferases and clinical drug-drug interactions. Pharmacol Ther 106(1):97–132. https://doi.org/10.1016/j.pharmthera.2004.10.013. S0163-7258(04)00200-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  69. Remmel RP, Zhou J, Argikar UA (2008) UDP-glucuronosyltransferases. In: Drug-drug interactions, 2nd edn. Informa Healthcare USA Inc, Carlsbad, CA, pp 87–134

    Google Scholar 

  70. Boyd MA, Srasuebkul P, Ruxrungtham K, Mackenzie PI, Uchaipichat V, Stek M Jr, Lange JM, Phanuphak P, Cooper DA, Udomuksorn W, Miners JO (2006) Relationship between hyperbilirubinaemia and UDP-glucuronosyltransferase 1A1 (UGT1A1) polymorphism in adult HIV-infected Thai patients treated with indinavir. Pharmacogenet Genomics 16(5):321–329. https://doi.org/10.1097/01.fpc.0000197465.14340.d4

    Article  CAS  PubMed  Google Scholar 

  71. Knights KM, Winner LK, Elliot DJ, Bowalgaha K, Miners JO (2009) Aldosterone glucuronidation by human liver and kidney microsomes and recombinant UDP-glucuronosyltransferases: inhibition by NSAIDs. Br J Clin Pharmacol 68(3):402–412. https://doi.org/10.1111/j.1365-2125.2009.03469.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Miners JO, Chau N, Rowland A, Burns K, McKinnon RA, Mackenzie PI, Tucker GT, Knights KM, Kichenadasse G (2017) Inhibition of human UDP-glucuronosyltransferase enzymes by lapatinib, pazopanib, regorafenib and sorafenib: implications for hyperbilirubinemia. Biochem Pharmacol 129:85–95. https://doi.org/10.1016/j.bcp.2017.01.002

    Article  CAS  PubMed  Google Scholar 

  73. FDA (2012) Drug interaction studies—study design, data analysis, implications for dosing, and labeling recommendations (draft guidance)

    Google Scholar 

  74. Agency EM (2012) Guideline on investigation of drug interactions

    Google Scholar 

  75. FDA (2020) In vitro drug interaction studies – cytochrome p450 enzyme- and transporter-mediated drug interactions

    Google Scholar 

  76. FDA (2020) Safety testing of drug metabolites

    Google Scholar 

  77. Chiu SH, Huskey SW (1998) Species differences in N-glucuronidation. Drug Metab Dispos 26(9):838–847

    CAS  PubMed  Google Scholar 

  78. Walton K, Dorne JL, Renwick AG (2001) Uncertainty factors for chemical risk assessment: interspecies differences in glucuronidation. Food Chem Toxicol 39(12):1175–1190

    Article  CAS  PubMed  Google Scholar 

  79. Miners JO, Rowland A, Novak JJ, Lapham K, Goosen TC (2020) Evidence-based strategies for the characterisation of human drug and chemical glucuronidation in vitro and UDP-glucuronosyltransferase reaction phenotyping. Pharmacol Ther. https://doi.org/10.1016/j.pharmthera.2020.107689

  80. Uchaipichat V, Mackenzie PI, Elliot DJ, Miners JO (2006) Selectivity of substrate (trifluoperazine) and inhibitor (amitriptyline, androsterone, canrenoic acid, hecogenin, phenylbutazone, quinidine, quinine, and sulfinpyrazone) “probes” for human udp-glucuronosyltransferases. Drug Metab Dispos 34(3):449–456. https://doi.org/10.1124/dmd.105.007369. dmd.105.007369 [pii]

    Article  CAS  PubMed  Google Scholar 

  81. Miners JO, Bowalgaha K, Elliot DJ, Baranczewski P, Knights KM (2011) Characterization of niflumic acid as a selective inhibitor of human liver microsomal UDP-glucuronosyltransferase 1A9: application to the reaction phenotyping of acetaminophen glucuronidation. Drug Metab Dispos 39(4):644–652. https://doi.org/10.1124/dmd.110.037036. dmd.110.037036 [pii]

    Article  CAS  PubMed  Google Scholar 

  82. Kazmi F, Yerino P, Barbara JE, Parkinson A (2015) Further characterization of the metabolism of desloratadine and its cytochrome P450 and UDP-glucuronosyltransferase inhibition potential: identification of desloratadine as a relatively selective UGT2B10 inhibitor. Drug Metab Dispos 43(9):1294–1302. https://doi.org/10.1124/dmd.115.065011

    Article  CAS  PubMed  Google Scholar 

  83. Lapham K, Novak J, Niosi M, Leung LY, Goosen TC (2016) The effect of bovine serum albumin on UDP-glucuronosyltransferase (UGT) 1A9 and 2B7 inhibitory potency. Drug Metab Rev 48(Suppl 1):90

    Google Scholar 

  84. Zhang D, Chando TJ, Everett DW, Patten CJ, Dehal SS, Humphreys WG (2005) In vitro inhibition of UDP glucuronosyltransferases by atazanavir and other HIV protease inhibitors and the relationship of this property to in vivo bilirubin glucuronidation. Drug Metab Dispos 33(11):1729–1739. https://doi.org/10.1124/dmd.105.005447

    Article  CAS  PubMed  Google Scholar 

  85. Fallon JK, Harbourt DE, Maleki SH, Kessler FK, Ritter JK, Smith PC (2008) Absolute quantification of human uridine-diphosphate glucuronosyl transferase (UGT) enzyme isoforms 1A1 and 1A6 by tandem LC-MS. Drug Metab Lett 2(3):210–222

    Article  CAS  PubMed  Google Scholar 

  86. Harbourt DE, Fallon JK, Ito S, Baba T, Ritter JK, Glish GL, Smith PC (2012) Quantification of human uridine-diphosphate glucuronosyl transferase 1A isoforms in liver, intestine, and kidney using nanobore liquid chromatography-tandem mass spectrometry. Anal Chem 84(1):98–105. https://doi.org/10.1021/ac201704a

    Article  CAS  PubMed  Google Scholar 

  87. Sato Y, Nagata M, Kawamura A, Miyashita A, Usui T (2012) Protein quantification of UDP-glucuronosyltransferases 1A1 and 2B7 in human liver microsomes by LC-MS/MS and correlation with glucuronidation activities. Xenobiotica 42(9):823–829. https://doi.org/10.3109/00498254.2012.665950

    Article  CAS  PubMed  Google Scholar 

  88. Groer C, Busch D, Patrzyk M, Beyer K, Busemann A, Heidecke CD, Drozdzik M, Siegmund W, Oswald S (2014) Absolute protein quantification of clinically relevant cytochrome P450 enzymes and UDP-glucuronosyltransferases by mass spectrometry-based targeted proteomics. J Pharm Biomed Anal 100:393–401. https://doi.org/10.1016/j.jpba.2014.08.016

    Article  CAS  PubMed  Google Scholar 

  89. Achour B, Russell MR, Barber J, Rostami-Hodjegan A (2014) Simultaneous quantification of the abundance of several cytochrome P450 and uridine 5′-diphospho-glucuronosyltransferase enzymes in human liver microsomes using multiplexed targeted proteomics. Drug Metab Dispos 42(4):500–510. https://doi.org/10.1124/dmd.113.055632

    Article  CAS  PubMed  Google Scholar 

  90. Ohtsuki S, Schaefer O, Kawakami H, Inoue T, Liehner S, Saito A, Ishiguro N, Kishimoto W, Ludwig-Schwellinger E, Ebner T, Terasaki T (2012) Simultaneous absolute protein quantification of transporters, cytochromes P450, and UDP-glucuronosyltransferases as a novel approach for the characterization of individual human liver: comparison with mRNA levels and activities. Drug Metab Dispos 40(1):83–92. https://doi.org/10.1124/dmd.111.042259

    Article  CAS  PubMed  Google Scholar 

  91. Fallon JK, Neubert H, Hyland R, Goosen TC, Smith PC (2013) Targeted quantitative proteomics for the analysis of 14 UGT1As and -2Bs in human liver using nanoUPLC-MS/MS with selected reaction monitoring. J Proteome Res 12(10):4402–4413. https://doi.org/10.1021/pr4004213

    Article  CAS  PubMed  Google Scholar 

  92. Margaillan G, Rouleau M, Fallon JK, Caron P, Villeneuve L, Turcotte V, Smith PC, Joy MS, Guillemette C (2015) Quantitative profiling of human renal UDP-glucuronosyltransferases and glucuronidation activity: a comparison of normal and tumoral kidney tissues. Drug Metab Dispos 43(4):611–619. https://doi.org/10.1124/dmd.114.062877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sato Y, Nagata M, Tetsuka K, Tamura K, Miyashita A, Kawamura A, Usui T (2014) Optimized methods for targeted peptide-based quantification of human uridine 5′-diphosphate-glucuronosyltransferases in biological specimens using liquid chromatography-tandem mass spectrometry. Drug Metab Dispos 42(5):885–889. https://doi.org/10.1124/dmd.113.056291

    Article  CAS  PubMed  Google Scholar 

  94. Knights KM, Spencer SM, Fallon JK, Chau N, Smith PC, Miners JO (2016) Scaling factors for the in vitro-in vivo extrapolation (IV-IVE) of renal drug and xenobiotic glucuronidation clearance. Br J Clin Pharmacol 81(6):1153–1164. https://doi.org/10.1111/bcp.12889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang H, Patana AS, Mackenzie PI, Ikushiro S, Goldman A, Finel M (2012) Human UDP-glucuronosyltransferase expression in insect cells: ratio of active to inactive recombinant proteins and the effects of a C-terminal his-tag on glucuronidation kinetics. Drug Metab Dispos 40(10):1935–1944. https://doi.org/10.1124/dmd.112.046086

    Article  CAS  PubMed  Google Scholar 

  96. Rouguieg K, Picard N, Sauvage FL, Gaulier JM, Marquet P (2010) Contribution of the different UDP-glucuronosyltransferase (UGT) isoforms to buprenorphine and norbuprenorphine metabolism and relationship with the main UGT polymorphisms in a bank of human liver microsomes. Drug Metab Dispos 38(1):40–45. https://doi.org/10.1124/dmd.109.029546. dmd.109.029546 [pii]

    Article  CAS  PubMed  Google Scholar 

  97. Zhu L, Ge G, Zhang H, Liu H, He G, Liang S, Zhang Y, Fang Z, Dong P, Finel M, Yang L (2012) Characterization of hepatic and intestinal glucuronidation of magnolol: application of the relative activity factor approach to decipher the contributions of multiple UDP-glucuronosyltransferase isoforms. Drug Metab Dispos 40(3):529–538. https://doi.org/10.1124/dmd.111.042192. dmd.111.042192 [pii]

    Article  CAS  PubMed  Google Scholar 

  98. Ishii Y, Takeda S, Yamada H (2010) Modulation of UDP-glucuronosyltransferase activity by protein-protein association. Drug Metab Rev 42(1):145–158. https://doi.org/10.3109/03602530903208579

    Article  CAS  PubMed  Google Scholar 

  99. Meech R, Mackenzie PI (1997) UDP-glucuronosyltransferase, the role of the amino terminus in dimerization. J Biol Chem 272(43):26913–26917

    Article  CAS  PubMed  Google Scholar 

  100. Ghosh SS, Sappal BS, Kalpana GV, Lee SW, Chowdhury JR, Chowdhury NR (2001) Homodimerization of human bilirubin-uridine-diphosphoglucuronate glucuronosyltransferase-1 (UGT1A1) and its functional implications. J Biol Chem 276(45):42108–42115. https://doi.org/10.1074/jbc.M106742200. M106742200 [pii]

    Article  CAS  PubMed  Google Scholar 

  101. Girard H, Levesque E, Bellemare J, Journault K, Caillier B, Guillemette C (2007) Genetic diversity at the UGT1 locus is amplified by a novel 3′ alternative splicing mechanism leading to nine additional UGT1A proteins that act as regulators of glucuronidation activity. Pharmacogenet Genomics 17(12):1077–1089. https://doi.org/10.1097/FPC.0b013e3282f1f118. 01213011-200712000-00008 [pii]

    Article  CAS  PubMed  Google Scholar 

  102. Ishii Y, Miyoshi A, Watanabe R, Tsuruda K, Tsuda M, Yamaguchi-Nagamatsu Y, Yoshisue K, Tanaka M, Maji D, Ohgiya S, Oguri K (2001) Simultaneous expression of guinea pig UDP-glucuronosyltransferase 2B21 and 2B22 in COS-7 cells enhances UDP-glucuronosyltransferase 2B21-catalyzed morphine-6-glucuronide formation. Mol Pharmacol 60(5):1040–1048

    Article  CAS  PubMed  Google Scholar 

  103. Fujiwara R, Nakajima M, Oda S, Yamanaka H, Ikushiro S, Sakaki T, Yokoi T (2010) Interactions between human UDP-glucuronosyltransferase (UGT) 2B7 and UGT1A enzymes. J Pharm Sci 99(1):442–454. https://doi.org/10.1002/jps.21830

    Article  CAS  PubMed  Google Scholar 

  104. Fujiwara R, Nakajima M, Yamanaka H, Nakamura A, Katoh M, Ikushiro S, Sakaki T, Yokoi T (2007) Effects of coexpression of UGT1A9 on enzymatic activities of human UGT1A isoforms. Drug Metab Dispos 35(5):747–757. https://doi.org/10.1124/dmd.106.014191. dmd.106.014191 [pii]

    Article  CAS  PubMed  Google Scholar 

  105. Fujiwara R, Nakajima M, Yamanaka H, Katoh M, Yokoi T (2007) Interactions between human UGT1A1, UGT1A4, and UGT1A6 affect their enzymatic activities. Drug Metab Dispos 35(10):1781–1787. https://doi.org/10.1124/dmd.107.016402. dmd.107.016402 [pii]

    Article  CAS  PubMed  Google Scholar 

  106. Kurkela M, Patana AS, Mackenzie PI, Court MH, Tate CG, Hirvonen J, Goldman A, Finel M (2007) Interactions with other human UDP-glucuronosyltransferases attenuate the consequences of the Y485D mutation on the activity and substrate affinity of UGT1A6. Pharmacogenet Genomics 17(2):115–126. https://doi.org/10.1097/FPC.0b013e328011b598. 01213011-200702000-00003 [pii]

    Article  CAS  PubMed  Google Scholar 

  107. Takeda S, Ishii Y, Iwanaga M, Mackenzie PI, Nagata K, Yamazoe Y, Oguri K, Yamada H (2005) Modulation of UDP-glucuronosyltransferase function by cytochrome P450: evidence for the alteration of UGT2B7-catalyzed glucuronidation of morphine by CYP3A4. Mol Pharmacol 67(3):665–672. https://doi.org/10.1124/mol.104.007641. mol.104.007641 [pii]

    Article  CAS  PubMed  Google Scholar 

  108. Takeda S, Ishii Y, Mackenzie PI, Nagata K, Yamazoe Y, Oguri K, Yamada H (2005) Modulation of UDP-glucuronosyltransferase 2B7 function by cytochrome P450s in vitro: differential effects of CYP1A2, CYP2C9 and CYP3A4. Biol Pharm Bull 28(10):2026–2027. doi:JST.JSTAGE/bpb/28.2026 [pii]

    Article  CAS  PubMed  Google Scholar 

  109. Taura K, Naito E, Ishii Y, Mori MA, Oguri K, Yamada H (2004) Cytochrome P450 1A1 (CYP1A1) inhibitor alpha-naphthoflavone interferes with UDP-glucuronosyltransferase (UGT) activity in intact but not in permeabilized hepatic microsomes from 3-methylcholanthrene-treated rats: possible involvement of UGT-P450 interactions. Biol Pharm Bull 27(1):56–60

    Article  CAS  PubMed  Google Scholar 

  110. Castuma CE, Brenner RR (1983) Effect of fatty acid deficiency on microsomal membrane fluidity and cooperativity of the UDP-glucuronyltransferase. Biochim Biophys Acta 729(1):9–16. doi:0005-2736(83)90449-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  111. Parkinson A, Kazmi F, Buckley DB, Yerino P, Ogilvie BW, Paris BL (2010) System-dependent outcomes during the evaluation of drug candidates as inhibitors of cytochrome P450 (CYP) and uridine diphosphate glucuronosyltransferase (UGT) enzymes: human hepatocytes versus liver microsomes versus recombinant enzymes. Drug Metab Pharmacokinet 25(1):16–27. doi:JST.JSTAGE/dmpk/25.16 [pii]

    Article  CAS  PubMed  Google Scholar 

  112. Rowland A, Elliot DJ, Williams JA, Mackenzie PI, Dickinson RG, Miners JO (2006) In vitro characterization of lamotrigine N2-glucuronidation and the lamotrigine-valproic acid interaction. Drug Metab Dispos 34(6):1055–1062. https://doi.org/10.1124/dmd.106.009340. dmd.106.009340 [pii]

    Article  CAS  PubMed  Google Scholar 

  113. Rowland AS, Umbach DM, Bohlig EM, Stallone L, Sandler DP (2007) Modifying the response labels of an ADHD teacher rating scale: psychometric and epidemiologic implications. J Atten Disord 11(3):384–397. https://doi.org/10.1177/1087054707305082.11/3/384. [pii]

    Article  PubMed  Google Scholar 

  114. Wattanachai N, Tassaneeyakul W, Rowland A, Elliot DJ, Bowalgaha K, Knights KM, Miners JO (2012) Effect of albumin on human liver microsomal and recombinant CYP1A2 activities: impact on in vitro-in vivo extrapolation of drug clearance. Drug Metab Dispos 40(5):982–989. https://doi.org/10.1124/dmd.111.044057. dmd.111.044057 [pii]

    Article  CAS  PubMed  Google Scholar 

  115. Al-Jahdari WS, Yamamoto K, Hiraoka H, Nakamura K, Goto F, Horiuchi R (2006) Prediction of total propofol clearance based on enzyme activities in microsomes from human kidney and liver. Eur J Clin Pharmacol 62(7):527–533. https://doi.org/10.1007/s00228-006-0130-2

    Article  CAS  PubMed  Google Scholar 

  116. Kemp DC, Fan PW, Stevens JC (2002) Characterization of raloxifene glucuronidation in vitro: contribution of intestinal metabolism to presystemic clearance. Drug Metab Dispos 30(6):694–700. https://doi.org/10.1124/dmd.30.6.694

    Article  CAS  PubMed  Google Scholar 

  117. Kosoglou T, Statkevich P, Johnson-Levonas AO, Paolini JF, Bergman AJ, Alton KB (2005) Ezetimibe: a review of its metabolism, pharmacokinetics and drug interactions. Clin Pharmacokinet 44(5):467–494. https://doi.org/10.2165/00003088-200544050-00002

    Article  CAS  PubMed  Google Scholar 

  118. van Heek M, Farley C, Compton DS, Hoos L, Alton KB, Sybertz EJ, Davis HR Jr (2000) Comparison of the activity and disposition of the novel cholesterol absorption inhibitor, SCH58235, and its glucuronide, SCH60663. Br J Pharmacol 129(8):1748–1754. https://doi.org/10.1038/sj.bjp.0703235

    Article  PubMed  PubMed Central  Google Scholar 

  119. Nakamori F, Naritomi Y, Hosoya K, Moriguchi H, Tetsuka K, Furukawa T, Kadono K, Yamano K, Terashita S, Teramura T (2012) Quantitative prediction of human intestinal glucuronidation effects on intestinal availability of UDP-glucuronosyltransferase substrates using in vitro data. Drug Metab Dispos 40(9):1771–1777. https://doi.org/10.1124/dmd.112.045476

    Article  CAS  PubMed  Google Scholar 

  120. Gill KL, Gertz M, Houston JB, Galetin A (2013) Application of a physiologically based pharmacokinetic model to assess propofol hepatic and renal glucuronidation in isolation: utility of in vitro and in vivo data. Drug Metab Dispos 41(4):744–753. https://doi.org/10.1124/dmd.112.050294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Liu SN, Lu JBL, Watson CJW, Lazarus P, Desta Z, Gufford BT (2019) Mechanistic assessment of extrahepatic contributions to glucuronidation of integrase strand transfer inhibitors. Drug Metab Dispos 47(5):535–544. https://doi.org/10.1124/dmd.118.085035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Colom H, Lloberas N, Andreu F, Caldes A, Torras J, Oppenheimer F, Sanchez-Plumed J, Gentil MA, Kuypers DR, Brunet M, Ekberg H, Grinyo JM (2014) Pharmacokinetic modeling of enterohepatic circulation of mycophenolic acid in renal transplant recipients. Kidney Int 85(6):1434–1443. https://doi.org/10.1038/ki.2013.517

    Article  CAS  PubMed  Google Scholar 

  123. Matsunaga N, Wada S, Nakanishi T, Ikenaga M, Ogawa M, Tamai I (2014) Mathematical modeling of the in vitro hepatic disposition of mycophenolic acid and its glucuronide in sandwich-cultured human hepatocytes. Mol Pharm 11(2):568–579. https://doi.org/10.1021/mp400513k

    Article  CAS  PubMed  Google Scholar 

  124. Patel CG, Ogasawara K, Akhlaghi F (2013) Mycophenolic acid glucuronide is transported by multidrug resistance-associated protein 2 and this transport is not inhibited by cyclosporine, tacrolimus or sirolimus. Xenobiotica 43(3):229–235. https://doi.org/10.3109/00498254.2012.713531

    Article  CAS  PubMed  Google Scholar 

  125. Argikar UA, Potter PM, Hutzler JM, Marathe PH (2016) Challenges and opportunities with non-CYP enzymes aldehyde oxidase, carboxylesterase, and UDP-glucuronosyltransferase: focus on reaction phenotyping and prediction of human clearance. AAPS J 18(6):1391–1405. https://doi.org/10.1208/s12248-016-9962-6

    Article  CAS  PubMed  Google Scholar 

  126. Guillemette C (2003) Pharmacogenomics of human UDP-glucuronosyltransferase enzymes. Pharmacogenomics J 3(3):136–158. https://doi.org/10.1038/sj.tpj.6500171

    Article  CAS  PubMed  Google Scholar 

  127. Guillemette C, Levesque E, Rouleau M (2014) Pharmacogenomics of human uridine diphospho-glucuronosyltransferases and clinical implications. Clin Pharmacol Ther 96(3):324–339. https://doi.org/10.1038/clpt.2014.126

    Article  CAS  PubMed  Google Scholar 

  128. Stingl JC, Bartels H, Viviani R, Lehmann ML, Brockmoller J (2014) Relevance of UDP-glucuronosyltransferase polymorphisms for drug dosing: a quantitative systematic review. Pharmacol Ther 141(1):92–116. https://doi.org/10.1016/j.pharmthera.2013.09.002

    Article  CAS  PubMed  Google Scholar 

  129. Bosma PJ, Chowdhury JR, Bakker C, Gantla S, de Boer A, Oostra BA, Lindhout D, Tytgat GN, Jansen PL, Oude Elferink RP et al (1995) The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert’s syndrome. N Engl J Med 333(18):1171–1175. https://doi.org/10.1056/NEJM199511023331802

    Article  CAS  PubMed  Google Scholar 

  130. Argikar UA, Iwuchukwu OF, Nagar S (2008) Update on tools for evaluation of uridine diphosphoglucuronosyltransferase polymorphisms. Expert Opin Drug Metab Toxicol 4(7):879–894. https://doi.org/10.1517/17425255.4.7.879

    Article  CAS  PubMed  Google Scholar 

  131. Court MH (2010) Interindividual variability in hepatic drug glucuronidation: studies into the role of age, sex, enzyme inducers, and genetic polymorphism using the human liver bank as a model system. Drug Metab Rev 42(1):209–224. https://doi.org/10.3109/03602530903209288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Court MH, Hao Q, Krishnaswamy S, Bekaii-Saab T, Al-Rohaimi A, von Moltke LL, Greenblatt DJ (2004) UDP-glucuronosyltransferase (UGT) 2B15 pharmacogenetics: UGT2B15 D85Y genotype and gender are major determinants of oxazepam glucuronidation by human liver. J Pharmacol Exp Ther 310(2):656–665. https://doi.org/10.1124/jpet.104.067660

    Article  CAS  PubMed  Google Scholar 

  133. Bhatt DK, Basit A, Zhang H, Gaedigk A, Lee SB, Claw KG, Mehrotra A, Chaudhry AS, Pearce RE, Gaedigk R, Broeckel U, Thornton TA, Nickerson DA, Schuetz EG, Amory JK, Leeder JS, Prasad B (2018) Hepatic abundance and activity of androgen- and drug-metabolizing enzyme UGT2B17 are associated with genotype, age, and sex. Drug Metab Dispos 46(6):888–896. https://doi.org/10.1124/dmd.118.080952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Badee J, Fowler S, de Wildt SN, Collier AC, Schmidt S, Parrott N (2019) The ontogeny of UDP-glucuronosyltransferase enzymes, recommendations for future profiling studies and application through physiologically based pharmacokinetic modelling. Clin Pharmacokinet 58(2):189–211. https://doi.org/10.1007/s40262-018-0681-2

    Article  CAS  PubMed  Google Scholar 

  135. Foti RS, Argikar UA (2019) Uridine diphospho glucuronosyltransferases. In: Pearson PG, Weinkers LC (eds) Handbook of drug metabolism, 3rd edn. CRC Press, Boca Raton, FL, pp 109–159

    Chapter  Google Scholar 

  136. Krekels EH, Danhof M, Tibboel D, Knibbe CA (2012) Ontogeny of hepatic glucuronidation; methods and results. Curr Drug Metab 13(6):728–743. https://doi.org/10.2174/138920012800840455

    Article  CAS  PubMed  Google Scholar 

  137. Argikar UA, Remmel RP (2009) Variation in glucuronidation of lamotrigine in human liver microsomes. Xenobiotica 39(5):355–363. https://doi.org/10.1080/00498250902745082

    Article  CAS  PubMed  Google Scholar 

  138. Argikar UA, Remmel RP (2009) Effect of aging on glucuronidation of valproic acid in human liver microsomes and the role of UDP-glucuronosyltransferase UGT1A4, UGT1A8, and UGT1A10. Drug Metab Dispos 37(1):229–236. https://doi.org/10.1124/dmd.108.022426

    Article  CAS  PubMed  Google Scholar 

  139. Badee J, Qiu N, Collier AC, Takahashi RH, Forrest WF, Parrott N, Schmidt S, Fowler S (2019) Characterization of the ontogeny of hepatic UDP-glucuronosyltransferase enzymes based on glucuronidation activity measured in human liver microsomes. J Clin Pharmacol 59(Suppl 1):S42–S55. https://doi.org/10.1002/jcph.1493

    Article  CAS  PubMed  Google Scholar 

  140. Krekels EH, Neely M, Panoilia E, Tibboel D, Capparelli E, Danhof M, Mirochnick M, Knibbe CA (2012) From pediatric covariate model to semiphysiological function for maturation: part I-extrapolation of a covariate model from morphine to Zidovudine. CPT Pharmacometrics Syst Pharmacol 1:e9. https://doi.org/10.1038/psp.2012.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Krekels EH, Johnson TN, den Hoedt SM, Rostami-Hodjegan A, Danhof M, Tibboel D, Knibbe CA (2012) From pediatric covariate model to semiphysiological function for maturation: part II-sensitivity to physiological and physicochemical properties. CPT Pharmacometrics Syst Pharmacol 1:e10. https://doi.org/10.1038/psp.2012.12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Michelet R, Van Bocxlaer J, Allegaert K, Vermeulen A (2018) The use of PBPK modeling across the pediatric age range using propofol as a case. J Pharmacokinet Pharmacodyn 45(6):765–785. https://doi.org/10.1007/s10928-018-9607-8

    Article  CAS  PubMed  Google Scholar 

  143. Congiu M, Mashford ML, Slavin JL, Desmond PV (2002) UDP glucuronosyltransferase mRNA levels in human liver disease. Drug Metab Dispos 30(2):129–134. https://doi.org/10.1124/dmd.30.2.129

    Article  CAS  PubMed  Google Scholar 

  144. Osborne R, Joel S, Grebenik K, Trew D, Slevin M (1993) The pharmacokinetics of morphine and morphine glucuronides in kidney failure. Clin Pharmacol Ther 54(2):158–167. https://doi.org/10.1038/clpt.1993.127

    Article  CAS  PubMed  Google Scholar 

  145. Singlas E, Pioger JC, Taburet AM, Colin JN, Fillastre JP (1989) Zidovudine disposition in patients with severe renal impairment: influence of hemodialysis. Clin Pharmacol Ther 46(2):190–197. https://doi.org/10.1038/clpt.1989.125

    Article  CAS  PubMed  Google Scholar 

  146. Dickinson RG, Verbeeck RK, King AR, Restifo AC, Pond SM (1991) Diflunisal and its conjugates in patients with renal failure. Br J Clin Pharmacol 31(5):546–550. https://doi.org/10.1111/j.1365-2125.1991.tb05578.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Miners JO, Yang X, Knights KM, Zhang L (2017) The role of the kidney in drug elimination: transport, metabolism, and the impact of kidney disease on drug clearance. Clin Pharmacol Ther 102(3):436–449. https://doi.org/10.1002/cpt.757

    Article  CAS  PubMed  Google Scholar 

  148. Ahlers SJ, Valitalo PA, Peeters MY, Gulik L, van Dongen EP, Dahan A, Tibboel D, Knibbe CA (2015) Morphine glucuronidation and elimination in intensive care patients: a comparison with healthy volunteers. Anesth Analg 121(5):1261–1273. https://doi.org/10.1213/ANE.0000000000000936

    Article  CAS  PubMed  Google Scholar 

  149. Allain EP, Rouleau M, Levesque E, Guillemette C (2020) Emerging roles for UDP-glucuronosyltransferases in drug resistance and cancer progression. Br J Cancer 122(9):1277–1287. https://doi.org/10.1038/s41416-019-0722-0

    Article  PubMed  PubMed Central  Google Scholar 

  150. Bailey MJ, Dickinson RG (2003) Acyl glucuronide reactivity in perspective: biological consequences. Chem Biol Interact 145(2):117–137

    Article  CAS  PubMed  Google Scholar 

  151. Dickinson RG (2011) Iso-glucuronides. Curr Drug Metab 12(3):222–228

    Article  CAS  PubMed  Google Scholar 

  152. Faed EM (1984) Properties of acyl glucuronides: implications for studies of the pharmacokinetics and metabolism of acidic drugs. Drug Metab Rev 15(5–6):1213–1249. https://doi.org/10.3109/03602538409033562

    Article  CAS  PubMed  Google Scholar 

  153. Regan SL, Maggs JL, Hammond TG, Lambert C, Williams DP, Park BK (2010) Acyl glucuronides: the good, the bad and the ugly. Biopharm Drug Dispos 31(7):367–395. https://doi.org/10.1002/bdd.720

    Article  CAS  PubMed  Google Scholar 

  154. Sallustio BC, Sabordo L, Evans AM, Nation RL (2000) Hepatic disposition of electrophilic acyl glucuronide conjugates. Curr Drug Metab 1(2):163–180

    Article  CAS  PubMed  Google Scholar 

  155. Skonberg C, Olsen J, Madsen KG, Hansen SH, Grillo MP (2008) Metabolic activation of carboxylic acids. Expert Opin Drug Metab Toxicol 4(4):425–438. https://doi.org/10.1517/17425255.4.4.425

    Article  CAS  PubMed  Google Scholar 

  156. Stachulski AV (2011) Chemistry and reactivity of acyl glucuronides. Curr Drug Metab 12(3):215–221

    Article  CAS  PubMed  Google Scholar 

  157. Hodge JE (1955) The Amadori rearrangement. Adv Carbohydr Chem 10:169–205

    CAS  PubMed  Google Scholar 

  158. Gunduz M, Argikar UA, Cirello AL, Dumouchel JL (2018) New perspectives on acyl glucuronide risk assessment in drug discovery: investigation of in vitro stability, in situ reactivity, and bioactivation. Drug Metab Lett 12(2):84–92. https://doi.org/10.2174/1872312812666180611113656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Boelsterli UA (2002) Xenobiotic acyl glucuronides and acyl CoA thioesters as protein-reactive metabolites with the potential to cause idiosyncratic drug reactions. Curr Drug Metab 3(4):439–450

    Article  CAS  PubMed  Google Scholar 

  160. Grillo MP (2011) Drug-S-acyl-glutathione thioesters: synthesis, bioanalytical properties, chemical reactivity, biological formation and degradation. Curr Drug Metab 12(3):229–244

    Article  CAS  PubMed  Google Scholar 

  161. Sawamura R, Okudaira N, Watanabe K, Murai T, Kobayashi Y, Tachibana M, Ohnuki T, Masuda K, Honma H, Kurihara A, Okazaki O (2010) Predictability of idiosyncratic drug toxicity risk for carboxylic acid-containing drugs based on the chemical stability of acyl glucuronide. Drug Metab Dispos 38(10):1857–1864. https://doi.org/10.1124/dmd.110.034173

    Article  CAS  PubMed  Google Scholar 

  162. Walker GS, Atherton J, Bauman J, Kohl C, Lam W, Reily M, Lou Z, Mutlib A (2007) Determination of degradation pathways and kinetics of acyl glucuronides by NMR spectroscopy. Chem Res Toxicol 20(6):876–886. https://doi.org/10.1021/tx600297u

    Article  CAS  PubMed  Google Scholar 

  163. Zhou J, Tracy TS, Remmel RP (2010) Bilirubin glucuronidation revisited: proper assay conditions to estimate enzyme kinetics with recombinant UGT1A1. Drug Metab Dispos 38(11):1907–1911. https://doi.org/10.1124/dmd.110.033829. dmd.110.033829 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Itaaho K, Mackenzie PI, Ikushiro S, Miners JO, Finel M (2008) The configuration of the 17-hydroxy group variably influences the glucuronidation of beta-estradiol and epiestradiol by human UDP-glucuronosyltransferases. Drug Metab Dispos 36(11):2307–2315. https://doi.org/10.1124/dmd.108.022731. dmd.108.022731 [pii]

    Article  CAS  PubMed  Google Scholar 

  165. Trottier J, Verreault M, Grepper S, Monte D, Belanger J, Kaeding J, Caron P, Inaba TT, Barbier O (2006) Human UDP-glucuronosyltransferase (UGT)1A3 enzyme conjugates chenodeoxycholic acid in the liver. Hepatology 44(5):1158–1170. https://doi.org/10.1002/hep.21362

    Article  CAS  PubMed  Google Scholar 

  166. Yamada A, Maeda K, Ishiguro N, Tsuda Y, Igarashi T, Ebner T, Roth W, Ikushiro S, Sugiyama Y (2011) The impact of pharmacogenetics of metabolic enzymes and transporters on the pharmacokinetics of telmisartan in healthy volunteers. Pharmacogenet Genomics 21(9):523–530. https://doi.org/10.1097/FPC.0b013e3283482502

    Article  CAS  PubMed  Google Scholar 

  167. Court MH (2005) Isoform-selective probe substrates for in vitro studies of human UDP-glucuronosyltransferases. Methods Enzymol 400:104–116. https://doi.org/10.1016/S0076-6879(05)00007-8. S0076-6879(05)00007-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  168. Krishnaswamy S, Duan SX, Von Moltke LL, Greenblatt DJ, Court MH (2003) Validation of serotonin (5-hydroxtryptamine) as an in vitro substrate probe for human UDP-glucuronosyltransferase (UGT) 1A6. Drug Metab Dispos 31(1):133–139

    Article  CAS  PubMed  Google Scholar 

  169. Court MH, Duan SX, Guillemette C, Journault K, Krishnaswamy S, Von Moltke LL, Greenblatt DJ (2002) Stereoselective conjugation of oxazepam by human UDP-glucuronosyltransferases (UGTs): S-oxazepam is glucuronidated by UGT2B15, while R-oxazepam is glucuronidated by UGT2B7 and UGT1A9. Drug Metab Dispos 30(11):1257–1265

    Article  CAS  PubMed  Google Scholar 

  170. Bowalgaha K, Elliot DJ, Mackenzie PI, Knights KM, Miners JO (2007) The glucuronidation of Delta4-3-Keto C19- and C21-hydroxysteroids by human liver microsomal and recombinant UDP-glucuronosyltransferases (UGTs): 6alpha- and 21-hydroxyprogesterone are selective substrates for UGT2B7. Drug Metab Dispos 35(3):363–370. https://doi.org/10.1124/dmd.106.013052

    Article  CAS  PubMed  Google Scholar 

  171. Zhang H, Basit A, Busch D, Yabut K, Bhatt DK, Drozdzik M, Ostrowski M, Li A, Collins C, Oswald S, Prasad B (2018) Quantitative characterization of UDP-glucuronosyltransferase 2B17 in human liver and intestine and its role in testosterone first-pass metabolism. Biochem Pharmacol 156:32–42. https://doi.org/10.1016/j.bcp.2018.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Appendix

A representative protocol on in vitro glucuronidation: determination of kinetic parameters for estradiol-3-glucuronidation in HLM.

The following protocol illustrates the incubation conditions and procedures for determining the kinetic parameters of β-estradiol-3-glucuronidation in HLM. Based on prior time and protein linearity studies, the kinetic characterization is conducted with 0.25 mg/mL of protein and for an incubation time of 20 min.

Reagents

  1. (a)

    Pooled human liver microsomes.

  2. (b)

    UltraPure™ 1 M Tris–HCl, pH 7.5.

  3. (c)

    Magnesium chloride (MgCl2) hexahydrate.

  4. (d)

    Alamethicin.

  5. (e)

    β-Estradiol and estadiol-3-glucuronide.

  6. (f)

    4-Methylumbelliferyl-β-D-glucuronide hydrate as internal standard.

Procedures

  1. A.

    Prepare the following stock solutions.

    1. (a)

      Incubation buffer : 5 mM MgCL2 in Tris Buffer (0.05 M, pH = 7.5).

    2. (b)

      5 mg/mL alamethicin in ethanol

    3. (c)

      50 mM UDPGA in incubation buffer

    4. (d)

      Estradiol stock solution: 8–10 concentrations; the concentrations of the stock solutions are 100-fold higher than the actual concentrations in the incubation.

  2. B.

    Prepare alamethicin-activated HLM.

    Dilute pooled HLM (20 mg/mL) with incubation buffer , and then add alamethicin (5 mg/mL). The final protein concentration and alamethicin content are 0.625 mg/mL and 50μg/mg of protein, respectively. Incubate the resulting mixture on ice for 15–30 min.

  3. C.

    Mix all the incubation components, except UDPGA, according to Table 2, and then incubate the resulting mixture and UDPGA stock solution separately in a 37 °C water bath for 3 min.

  4. D.

    Add prewarmed UDPGA stock solution to start the reaction.

  5. E.

    After incubating the complete incubation mixture at 37 °C for 20 min, stop the reaction by adding equal volume of acetonitrile, containing the internal standard, 0.5μM 4-methylumbelliferone glucuronide.

  6. F.

    Centrifuge the resulting mixture at 13,000 × g for 5 min. The concentrations of ®-estradiol-3-glucuronide in the supernatants are determined by LC-MS/MS analyses, based on standard curves prepared with an authentic ®-estradiol-3-glucuronide reference standard.

Table 2 Incubation components and the volume of each component added to the incubation

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhou, J., Argikar, U.A., Miners, J.O. (2021). Enzyme Kinetics of Uridine Diphosphate Glucuronosyltransferases (UGTs). In: Nagar, S., Argikar, U.A., Tweedie, D. (eds) Enzyme Kinetics in Drug Metabolism. Methods in Molecular Biology, vol 2342. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1554-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1554-6_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1553-9

  • Online ISBN: 978-1-0716-1554-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics