Skip to main content

Enzyme Kinetics, Pharmacokinetics, and Inhibition of Aldehyde Oxidase

  • Protocol
  • First Online:
Enzyme Kinetics in Drug Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2342))

Abstract

Aldehyde oxidase (AO) has emerged as an important drug metabolizing enzyme over the last decade. Several compounds have failed in the clinic because the clearance or toxicity was underestimated by preclinical species. Human AO is much more active than rodent AO, and dogs do not have functional AO. Metabolic products from AO-catalyzed oxidation are generally nonreactive and often they have much lower solubility. AO metabolism is not limited to oxidation as AO can also catalyze reduction of oxygen and nitrite. Reduction of oxygen leads to the reactive oxygen species (ROS) superoxide radical anion and hydrogen peroxide. Reduction of nitrite leads to the formation of nitric oxide with potential pharmacological implications. AO is also reported to catalyze the reductive metabolism of nitro-compounds, N-oxides, sulfoxides, isoxazoles, isothiazoles, nitrite, and hydroxamic acids. These reductive transformations may cause toxicity due to the formation of reactive metabolites. Moreover, the inhibition kinetics are complex, and multiple probe substrates should be used when assessing the potential for DDIs. Finally, AO appears to be amenable to computational predictions of both regioselectivity and rates of reaction, which holds promise for virtual screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Groot MJ (2006) Designing better drugs: predicting cytochrome P450 metabolism. Drug Discov Today 11(13):601–606. https://doi.org/10.1016/j.drudis.2006.05.001

    Article  CAS  PubMed  Google Scholar 

  2. Zimmerlin A, Trunzer M, Faller B (2011) CYP3A time-dependent inhibition risk assessment validated with 400 reference drugs. Drug Metab Dispos 39(6):1039–1046. https://doi.org/10.1124/dmd.110.037911

    Article  CAS  PubMed  Google Scholar 

  3. Zanger UM, Schwab M (2013) Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 138(1):103–141. https://doi.org/10.1016/j.pharmthera.2012.12.007

    Article  CAS  PubMed  Google Scholar 

  4. Argikar UA, Potter PM, Hutzler JM, Marathe PH (2016) Challenges and opportunities with non-CYP enzymes aldehyde oxidase, carboxylesterase, and UDP-glucuronosyltransferase: focus on reaction phenotyping and prediction of human clearance. AAPS J 18(6):1391–1405. https://doi.org/10.1208/s12248-016-9962-6

    Article  CAS  PubMed  Google Scholar 

  5. Pearson J, Dahal UP, Rock D, Peng C-C, Schenk JO, Joswig-Jones C, Jones JP (2011) The kinetic mechanism for cytochrome P450 metabolism of Type II binding compounds: evidence supporting direct reduction. Arch Biochem Biophys 511(1):69–79. https://doi.org/10.1016/j.abb.2011.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chiba M, Jin L, Neway W, Vacca JP, Tata JR, Chapman K, Lin JH (2001) P450 interaction with HIV protease inhibitors: relationship between metabolic stability, inhibitory potency, and P450 binding spectra. Drug Metab Dispos 29(1):1–3

    CAS  PubMed  Google Scholar 

  7. Beedham C (1985) Molybdenum hydroxylases as drug-metabolizing enzyme. Drug Metab Rev 16(1–2):119–156. https://doi.org/10.3109/03602538508991432

    Article  CAS  PubMed  Google Scholar 

  8. Itoh K, Maruyama H, Adachi M, Hoshino K, Watanabe N, Tanaka Y (2007) Lack of dimer formation ability in rat strains with low aldehyde oxidase activity. Xenobiotica 37(7):709–716. https://doi.org/10.1080/00498250701397713

    Article  CAS  PubMed  Google Scholar 

  9. Alfaro J, Jones J (2008) Studies on the mechanism of aldehyde oxidase and xanthine oxidase. J Org Chem 73(23):9469–9472. https://doi.org/10.1021/jo801053u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sharma R, Strelevitz TJ, Gao H, Clark AJ, Schildknegt K, Obach RS, Ripp SL, Spracklin DK, Tremaine LM, Vaz ADN (2012) Deuterium isotope effects on drug pharmacokinetics. I. System-dependent effects of specific deuteration with aldehyde oxidase cleared drugs. Drug Metab Dispos 40(3):625–634. https://doi.org/10.1124/dmd.111.042770

    Article  CAS  PubMed  Google Scholar 

  11. Alfaro JF, Joswig-Jones CA, Ouyang W, Nichols J, Crouch GJ, Jones JP (2009) Purification and mechanism of human aldehyde oxidase expressed in Escherichia coli. Drug Metab Dispos 37(12):2393–2398. https://doi.org/10.1124/dmd.109.029520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mahro M, Coelho C, Trincão J, Rodrigues D, Terao M, Garattini E, Saggu M, Lendzian F, Hildebrandt P, Romão MJ, Leimkühler S (2011) Characterization and crystallization of mouse aldehyde oxidase 3: from mouse liver to Escherichia coli heterologous protein expression. Drug Metab Dispos 39(10):1939–1945. https://doi.org/10.1124/dmd.111.040873

    Article  CAS  PubMed  Google Scholar 

  13. Hille R, Massey V (1981) Studies on the oxidative half-reaction of xanthine oxidase. J Biol Chem 256(17):9090–9095

    Article  CAS  PubMed  Google Scholar 

  14. Kundu T, Hille R, Velayutham M, Zweier J (2007) Characterization of superoxide production from aldehyde oxidase: an important source of oxidants in biological tissues. Arch Biochem Biophys 460(1):113–121. https://doi.org/10.1016/j.abb.2006.12.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tatsumi K, Kitamura S, Narai N (1986) Reductive metabolism of aromatic nitrocompounds including carcinogens by rabbit liver preparations. Cancer Res 46(3):1089–1093

    CAS  PubMed  Google Scholar 

  16. Sugihara K, Kitamura S, Tatsumi K (1996) Involvement of mammalian liver cytosols and aldehyde oxidase in reductive metabolism of zonisamide. Drug Metab Dispos 24(2):199–202

    CAS  PubMed  Google Scholar 

  17. Kitamura S, Sugihara K, Ohta S (2006) Drug-metabolizing ability of molybdenum hydroxylases. Drug Metab Pharmacokinet 21(2):83–98. https://doi.org/10.2133/dmpk.21.83

    Article  CAS  PubMed  Google Scholar 

  18. Rajapakse A, Linder C, Morrison R, Sarkar U, Leigh N, Barnes C, Daniels S, Gates K (2013) Enzymatic conversion of 6-nitroquinoline to the fluorophore 6-aminoquinoline selectively under hypoxic conditions. Chem Res Toxicol 26(4):555–563. https://doi.org/10.1021/tx300483z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Paragas EM, Humphreys SC, Min J, Joswig-Jones CA, Jones JP (2017) The two faces of aldehyde oxidase: oxidative and reductive transformations of 5-nitroquinoline. Biochem Pharmacol 145:210–217. https://doi.org/10.1016/j.bcp.2017.09.002

    Article  CAS  PubMed  Google Scholar 

  20. Ogiso T, Fukami T, Mishiro K, Konishi K, Jones JP, Nakajima M (2018) Substrate selectivity of human aldehyde oxidase 1 in reduction of nitroaromatic drugs. Arch Biochem Biophys 659:85–92. https://doi.org/10.1016/j.abb.2018.10.017

    Article  CAS  PubMed  Google Scholar 

  21. Maia LB, Moura JJG (2018) Putting xanthine oxidoreductase and aldehyde oxidase on the NO metabolism map: nitrite reduction by molybdoenzymes. Redox Biol 19:274–289. https://doi.org/10.1016/j.redox.2018.08.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hartmann T, Terao M, Garattini E, Teutloff C, Alfaro JF, Jones JP, Leimkühler S (2012) The impact of single nucleotide polymorphisms on human aldehyde oxidase. Drug Metab Dispos 40(5):856–864. https://doi.org/10.1124/dmd.111.043828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schumann S, Terao M, Garattini E, Saggu M, Lendzian F, Hildebrandt P, Leimkuhler S (2009) Site directed mutagenesis of amino acid residues at the active site of mouse aldehyde oxidase AOX1. PLoS One 4(4). https://doi.org/10.1371/journal.pone.0005348

  24. Wahl RC, Rajagopalan KV (1982) Evidence for the inorganic nature of the cyanolyzable sulfur of molybdenum hydroxylases. J Biol Chem 257(3):1354–1359

    Article  CAS  PubMed  Google Scholar 

  25. Mendel RR, Leimkuhler S (2015) The biosynthesis of the molybdenum cofactors. J Biol Inorg Chem 20(2):337–347. https://doi.org/10.1007/s00775-014-1173-y

    Article  CAS  PubMed  Google Scholar 

  26. Palmer T, Santini CL, IobbiNivol C, Eaves DJ, Boxer DH, Giordano G (1996) Involvement of the narJ and mob gene products in distinct steps in the biosynthesis of the molybdoenzyme nitrate reductase in Escherichia coli. Mol Microbiol 20(4):875–884. https://doi.org/10.1111/j.1365-2958.1996.tb02525.x

    Article  CAS  PubMed  Google Scholar 

  27. Foti A, Hartmann T, Coelho C, Santos-Silva T, Romao MJ, Leimkuhler S (2016) Optimization of the expression of human aldehyde oxidase for investigations of single-nucleotide polymorphisms. Drug Metab Dispos 44(8):1277–1285. https://doi.org/10.1124/dmd.115.068395

    Article  CAS  PubMed  Google Scholar 

  28. Terao M, Garattini E, Romão MJ, Leimkühler S (2020) Evolution, expression, and substrate specificities of aldehyde oxidase enzymes in eukaryotes. J Biol Chem. https://doi.org/10.1074/jbc.REV119.007741

  29. Diamond S, Boer J, Maduskuie T, Falahatpisheh N, Li Y, Yeleswaram S (2010) Species-specific metabolism of SGX523 by aldehyde oxidase and the toxicological implications. Drug Metab Dispos 38:1277–1285. https://doi.org/10.1124/dmd.110.032375

    Article  CAS  PubMed  Google Scholar 

  30. Choughule KV, Barr JT, Jones JP (2013) Evaluation of rhesus monkey and Guinea pig hepatic cytosol fractions as models for human aldehyde oxidase. Drug Metab Dispos 41(10):1852–1858. https://doi.org/10.1124/dmd.113.052985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Choughule KV, Joswig-Jones CA, Jones JP (2015) Interspecies differences in the metabolism of methotrexate: an insight into the active site differences between human and rabbit aldehyde oxidase. Biochem Pharmacol 96(3):288–295. https://doi.org/10.1016/j.bcp.2015.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stanulović M, Chaykin S (1971) Aldehyde oxidase: catalysis of the oxidation of N1-methylnicotinamide and pyridoxal. Arch Biochem Biophys 145(1):27–34

    Article  PubMed  Google Scholar 

  33. Ambroziak W, Izaguirre G, Pietruszko R (1999) Metabolism of retinaldehyde and other aldehydes in soluble extracts of human liver and kidney. J Biol Chem 274(47):33366–33373

    Article  CAS  PubMed  Google Scholar 

  34. Terao M, Kurosaki M, Barzago MM, Fratelli M, Bagnati R, Bastone A, Giudice C, Scanziani E, Mancuso A, Tiveron C, Garattini E (2009) Role of the molybdoflavoenzyme aldehyde oxidase homolog 2 in the biosynthesis of retinoic acid: generation and characterization of a knockout mouse. Mol Cell Biol 29(2):357–377

    Article  CAS  PubMed  Google Scholar 

  35. Beedham C, Critchley DJ, Rance DJ (1995) Substrate specificity of human liver aldehyde oxidase toward substituted quinazolines and phthalazines: a comparison with hepatic enzyme from Guinea pig, rabbit, and baboon. Arch Biochem Biophys 319(2):481–490

    Article  CAS  PubMed  Google Scholar 

  36. Li H, Kundu T, Zweier J (2009) Characterization of the magnitude and mechanism of aldehyde oxidase-mediated nitric oxide production from nitrite. J Biol Chem 284(49):33850–33858. https://doi.org/10.1074/jbc.M109.019125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li H, Cui H, Kundu TK, Alzawahra W, Zweier JL (2008) Nitric oxide production from nitrite occurs primarily in tissues not in the blood: critical role of xanthine oxidase and aldehyde oxidase. J Biol Chem 283(26):17855–17863. https://doi.org/10.1074/jbc.M801785200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lymar SV, Hurst JK (1996) Carbon dioxide: physiological catalyst for peroxynitrite-mediated cellular damage or cellular protectant? Chem Res Toxicol 9(5):845–850. https://doi.org/10.1021/tx960046z

    Article  CAS  PubMed  Google Scholar 

  39. Goldstein S, Czapski G (1995) The reaction of NO. with O2.− and HO2.: a pulse radiolysis study. Free Radic Biol Med 19(4):505–510

    Article  CAS  PubMed  Google Scholar 

  40. Czapski G, Goldstein S (1995) The role of the reactions of .NO with superoxide and oxygen in biological systems: a kinetic approach. Free Radic Biol Med 19(6):785–794

    Article  CAS  PubMed  Google Scholar 

  41. Kundu TK, Velayutham M, Zweier JL (2012) Aldehyde oxidase functions as a superoxide generating NADH oxidase: an important redox regulated pathway of cellular oxygen radical formation. Biochemistry 51(13):2930–2939. https://doi.org/10.1021/bi3000879

    Article  CAS  PubMed  Google Scholar 

  42. Ruenitz PC, Bai X (1995) Acidic metabolites of tamoxifen. Aspects of formation and fate in the female rat. Drug Metab Dispos 23(9):993–998

    CAS  PubMed  Google Scholar 

  43. McDaniel HG, Podgainy H, Bressler R (1969) The metabolism of tolbutamide in rat liver. J Pharmacol Exp Ther 167(1):91–97

    CAS  PubMed  Google Scholar 

  44. Brandaenge S, Lindblom L (1979) The enzyme “aldehyde oxidase” is an iminium oxidase. Reaction with nicotine delta 1′(5′) iminium ion. Biochem Biophys Res Commun 91:991–996

    Article  CAS  Google Scholar 

  45. Kawashima K, Hosoi K, Naruke T, Shiba T, Kitamura M, Watabe T (1999) Aldehyde oxidase-dependent marked species difference in hepatic metabolism of the sedative-hypnotic, zaleplon, between monkeys and rats. Drug Metab Dispos 27(3):422–428

    CAS  PubMed  Google Scholar 

  46. Lake BG, Ball SE, Kao J, Renwick AB, Price RJ, Scatina JA (2002) Metabolism of zaleplon by human liver: evidence for involvement of aldehyde oxidase. Xenobiotica 32(10):835–847. https://doi.org/10.1080/00498250210158915

    Article  CAS  PubMed  Google Scholar 

  47. Pryde DC, Dalvie D, Hu Q, Jones P, Obach RS, Tran T-D (2010) Aldehyde oxidase: an enzyme of emerging importance in drug discovery. J Med Chem 53(24):8441–8460. https://doi.org/10.1021/jm100888d

    Article  CAS  PubMed  Google Scholar 

  48. Kuroda T, Namba K, Torimaru T, Kawashima K, Hayashi M (2000) Species differences in oral bioavailability of methotrexate between rats and monkeys. Biol Pharm Bull 23(3):334–338

    Article  CAS  PubMed  Google Scholar 

  49. Klecker RW, Cysyk RL, Collins JM (2006) Zebularine metabolism by aldehyde oxidase in hepatic cytosol from humans, monkeys, dogs, rats, and mice: influence of sex and inhibitors. Bioorg Med Chem 14(1):62–66. https://doi.org/10.1016/j.bmc.2005.07.053

    Article  CAS  PubMed  Google Scholar 

  50. Rashidi M-R, Beedham C, Smith JS, Davaran S (2007) In vitro study of 6-mercaptopurine oxidation catalysed by aldehyde oxidase and xanthine oxidase. Drug Metab Pharmacokinet 22(4):299–306

    Article  CAS  PubMed  Google Scholar 

  51. Kitamura S, Tatsumi K (1984) Reduction of tertiary amine N-oxides by liver preparations: function of aldehyde oxidase as a major N-oxide reductase. Biochem Biophys Res Commun 121(3):749–754

    Article  CAS  PubMed  Google Scholar 

  52. Dick RA, Kanne DB, Casida JE (2005) Identification of aldehyde oxidase as the neonicotinoid nitroreductase. Chem Res Toxicol 18(2):317–323. https://doi.org/10.1021/tx049737i

    Article  CAS  PubMed  Google Scholar 

  53. Dick RA, Kanne DB, Casida JE (2006) Substrate specificity of rabbit aldehyde oxidase for nitroguanidine and nitromethylene neonicotinoid insecticides. Chem Res Toxicol 19(1):38–43. https://doi.org/10.1021/tx050230x

    Article  CAS  PubMed  Google Scholar 

  54. Konishi K, Fukami T, Gotoh S, Nakajima M (2017) Identification of enzymes responsible for nitrazepam metabolism and toxicity in human. Biochem Pharmacol 140:150–160. https://doi.org/10.1016/j.bcp.2017.06.114

    Article  CAS  PubMed  Google Scholar 

  55. Amano T, Fukami T, Ogiso T, Hirose D, Jones J, Taniguchi T, Nakajima M (2018) Identification of enzymes responsible for dantrolene metabolism in the human liver: a clue to uncover the cause of liver injury. Biochem Pharmacol 151:69–78. https://doi.org/10.1016/j.bcp.2018.03.002

    Article  CAS  PubMed  Google Scholar 

  56. Sodhi J, Wong S, Kirkpatrick D, Liu L, Khojasteh C, Hop C, Barr J, Jones J, Halladay J (2015) A novel reaction mediated by human aldehyde oxidase: amide hydrolysis of GDC-0834. Drug Metab Dispos 43(6):908–915. https://doi.org/10.1124/dmd.114.061804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Garattini E, Terao M (2012) The role of aldehyde oxidase in drug metabolism. Expert Opin Drug Metab Toxicol 8(4):487–503. https://doi.org/10.1517/17425255.2012.663352

    Article  CAS  PubMed  Google Scholar 

  58. Obach RS, Huynh P, Allen MC, Beedham C (2004) Human liver aldehyde oxidase: inhibition by 239 drugs. J Clin Pharmacol 44(1):7–19

    Article  CAS  PubMed  Google Scholar 

  59. Korzekwa KR, Krishnamachary N, Shou M, Ogai A, Parise RA, Rettie AE, Gonzalez FJ, Tracy TS (1998) Evaluation of atypical cytochrome P450 kinetics with two-substrate models: evidence that multiple substrates can simultaneously bind to cytochrome P450 active sites. Biochemistry 37(12):4137–4147. https://doi.org/10.1021/bi9715627

    Article  CAS  PubMed  Google Scholar 

  60. Abbasi A, Paragas EM, Joswig-Jones CA, Rodgers JT, Jones JP (2019) Time course of aldehyde oxidase and why it is nonlinear. Drug Metab Dispos 47(5):473. https://doi.org/10.1124/dmd.118.085787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Maia L, Pereira V, Mira L, Moura J (2015) Nitrite reductase activity of rat and human xanthine oxidase, xanthine dehydrogenase, and aldehyde oxidase: evaluation of their contribution to NO formation in vivo. Biochemistry 54(3):685–710. https://doi.org/10.1021/bi500987w

    Article  CAS  PubMed  Google Scholar 

  62. Coelho C, Foti A, Hartmann T, Santos-Silva T, Leimkuehler S, Romao MJ (2015) Structural insights into xenobiotic and inhibitor binding to human aldehyde oxidase. Nat Chem Biol 11(10):779–783. https://doi.org/10.1038/nchembio.1895

    Article  CAS  PubMed  Google Scholar 

  63. Manevski N, King L, Pitt WR, Lecomte F, Toselli F (2019) Metabolism by aldehyde oxidase: drug design and complementary approaches to challenges in drug discovery. J Med Chem 62(24):10955–10994. https://doi.org/10.1021/acs.jmedchem.9b00875

    Article  CAS  PubMed  Google Scholar 

  64. Akabane T, Tanaka K, Irie M, Terashita S, Teramura T (2011) Case report of extensive metabolism by aldehyde oxidase in humans: pharmacokinetics and metabolite profile of FK3453 in rats, dogs, and humans. Xenobiotica 41(5):372–384. https://doi.org/10.3109/00498254.2010.549970

    Article  CAS  PubMed  Google Scholar 

  65. Sanoh S, Nozaki K, Murai H, Terashita S, Teramura T, Ohta S (2012) Prediction of human metabolism of FK3453 by aldehyde oxidase using chimeric mice transplanted with human or rat hepatocytes. Drug Metab Dispos 40(1):76–82. https://doi.org/10.1124/dmd.111.041954

    Article  CAS  PubMed  Google Scholar 

  66. Zhang X, Liu HH, Weller P, Zheng M, Tao W, Wang J, Liao G, Monshouwer M, Peltz G (2011) In silico and in vitro pharmacogenetics: aldehyde oxidase rapidly metabolizes a p38 kinase inhibitor. Pharmacogenomics J 11(1):15–24. https://doi.org/10.1038/tpj.2010.8

    Article  CAS  PubMed  Google Scholar 

  67. Liu L, Halladay JS, Shin Y, Wong S, Coraggio M, La H, Baumgardner M, Le H, Gopaul S, Boggs J, Kuebler P, Davis JC Jr, Liao XC, Lubach JW, Deese A, Sowell CG, Currie KS, Young WB, Khojasteh SC, Hop CE, Wong H (2011) Significant species difference in amide hydrolysis of GDC-0834, a novel potent and selective Bruton's tyrosine kinase inhibitor. Drug Metab Dispos 39(10):1840–1849. https://doi.org/10.1124/dmd.111.040840

    Article  CAS  PubMed  Google Scholar 

  68. Lolkema MP, Bohets HH, Arkenau H-T, Lampo A, Barale E, de Jonge MJA, van Doorn L, Hellemans P, de Bono JS, Eskens FALM (2015) The c-Met tyrosine kinase inhibitor JNJ-38877605 causes renal toxicity through species-specific insoluble metabolite formation. Clin Cancer Res 21(10):2297. https://doi.org/10.1158/1078-0432.CCR-14-3258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zheng J, Xin Y, Zhang J, Subramanian R, Murray BP, Whitney JA, Warr MR, Ling J, Moorehead L, Kwan E, Hemenway J, Smith BJ, Silverman JA (2018) Pharmacokinetics and disposition of momelotinib revealed a disproportionate human metabolite-resolution for clinical development. Drug Metab Dispos 46(3):237–247. https://doi.org/10.1124/dmd.117.078899

    Article  CAS  PubMed  Google Scholar 

  70. Glatthar R, Stojanovic A, Troxler T, Mattes H, Möbitz H, Beerli R, Blanz J, Gassmann E, Drückes P, Fendrich G, Gutmann S, Martiny-Baron G, Spence F, Hornfeld J, Peel JE, Sparrer H (2016) Discovery of imidazoquinolines as a novel class of potent, selective, and in vivo efficacious cancer Osaka thyroid (COT) kinase inhibitors. J Med Chem 59(16):7544–7560. https://doi.org/10.1021/acs.jmedchem.6b00598

    Article  CAS  PubMed  Google Scholar 

  71. Barr J, Jones J (2011) Inhibition of human liver aldehyde oxidase: implications for potential drug-drug interactions. Drug Metab Dispos 39(12):2381–2386. https://doi.org/10.1124/dmd.111.041806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Barr JT, Jones JP (2012) Evidence for substrate dependent inhibition profiles for human liver aldehyde oxidase. Drug Metab Dispos. https://doi.org/10.1124/dmd.112.048546

  73. Vandenbrink BM, Foti RS, Rock DA, Wienkers LC, Wahlstrom JL (2011) Prediction of CYP2D6 drug interactions from in vitro data: evidence for substrate-dependent inhibition. Drug Metab Dispos. https://doi.org/10.1124/dmd.111.041210

  74. Kumar V, Wahlstrom JL, Rock DA, Warren CJ, Gorman LA, Tracy TS (2006) CYP2C9 inhibition: impact of probe selection and pharmacogenetics on in vitro inhibition profiles. Drug Metab Dispos 34(12):1966–1975

    Article  CAS  PubMed  Google Scholar 

  75. Barr JT, Jones JP, Oberlies NH, Paine MF (2015) Inhibition of human aldehyde oxidase activity by diet-derived constituents: structural influence, enzyme-ligand interactions, and clinical relevance. Drug Metab Dispos 43(1):34. https://doi.org/10.1124/dmd.114.061192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mccormack JJ, Allen BA, Hodnett CN (1978) Oxidation of quinazoline and quinoxaline by xanthine oxidase and aldehyde oxidase. J Heterocycl Chem 15(8):1249–1254. https://doi.org/10.1002/jhet.5570150802

    Article  CAS  Google Scholar 

  77. Dick RA, Kanne DB, Casida JE (2007) Nitroso-imidacloprid irreversibly inhibits rabbit aldehyde oxidase. Chem Res Toxicol 20(12):1942–1946. https://doi.org/10.1021/tx700265r

    Article  CAS  PubMed  Google Scholar 

  78. Johnson C, Stubley-Beedham C, Stell JG (1985) Hydralazine: a potent inhibitor of aldehyde oxidase activity in vitro and in vivo. Biochem Pharmacol 34(24):4251–4256

    Article  CAS  PubMed  Google Scholar 

  79. Strelevitz TJ, Orozco CC, Obach RS (2012) Hydralazine as a selective probe inactivator of aldehyde oxidase in human hepatocytes: estimation of the contribution of aldehyde oxidase to metabolic clearance. Drug Metab Dispos 40(7):1441–1448. https://doi.org/10.1124/dmd.112.045195

    Article  CAS  PubMed  Google Scholar 

  80. Yamaguchi Y, Matsumura T, Ichida K, Okamoto K, Nishino T (2007) Human xanthine oxidase changes its substrate specificity to aldehyde oxidase type upon mutation of amino acid residues in the active site: roles of active site residues in binding and activation of purine substrate. J Biochem 141(4):513–524

    Article  CAS  PubMed  Google Scholar 

  81. Weidert E, Schoenborn S, Cantu-Medellin N, Choughule K, Jones J, Kelley E (2014) Inhibition of xanthine oxidase by the aldehyde oxidase inhibitor raloxifene: implications for identifying molybdopterin nitrite reductases. Nitric Oxide 37:41–45. https://doi.org/10.1016/j.niox.2013.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Clarke SE, Harrell AW, Chenery RJ (1995) Role of aldehyde oxidase in the in vitro conversion of famciclovir to penciclovir in human liver. Drug Metab Dispos 23(2):251–254

    CAS  PubMed  Google Scholar 

  83. Hutzler JM, Yang Y-S, Albaugh D, Fullenwider CL, Schmenk J, Fisher MB (2012) Characterization of aldehyde oxidase enzyme activity in cryopreserved human hepatocytes. Drug Metab Dispos 40(2):267–275. https://doi.org/10.1124/dmd.111.042861

    Article  CAS  PubMed  Google Scholar 

  84. Yang X, Johnson N, Di L (2019) Evaluation of cytochrome P450 selectivity for hydralazine as an aldehyde oxidase inhibitor for reaction phenotyping. J Pharm Sci 108(4):1627–1630. https://doi.org/10.1016/j.xphs.2018.11.007

    Article  CAS  PubMed  Google Scholar 

  85. Jin F, Robeson M, Zhou H, Moyer C, Wilbert S, Murray B, Ramanathan S (2015) Clinical drug interaction profile of idelalisib in healthy subjects. J Clin Pharmacol 55(8):909–919. https://doi.org/10.1002/jcph.495

    Article  CAS  PubMed  Google Scholar 

  86. Ramanathan S, Jin F, Sharma S, Kearney BP (2016) Clinical pharmacokinetic and pharmacodynamic profile of idelalisib. Clin Pharmacokinet 55(1):33–45. https://doi.org/10.1007/s40262-015-0304-0

    Article  CAS  PubMed  Google Scholar 

  87. Zetterberg C, Maltais F, Laitinen L, Liao S, Tsao H, Chakilam A, Hariparsad N (2016) VX-509 (decernotinib)-ediated CYP3A time-dependent inhibition: an aldehyde oxidase metabolite as a perpetrator of drug-drug interactions. Drug Metab Dispos 44(8):1286. https://doi.org/10.1124/dmd.116.071100

    Article  CAS  PubMed  Google Scholar 

  88. Torres RA, Korzekwa KR, McMasters DR, Fandozzi CM, Jones JP (2007) Use of density functional calculations to predict the regioselectivity of drugs and molecules metabolized by aldehyde oxidase. J Med Chem 50(19):4642–4647

    Article  CAS  PubMed  Google Scholar 

  89. Korzekwa KR, Jones JP (1993) Predicting the cytochrome P450 mediated metabolism of xenobiotics. Pharmacogenetics 3:1–18

    Article  CAS  PubMed  Google Scholar 

  90. Dalvie D, Sun H, Xiang C, Hu Q, Jiang Y, Kang P (2012) Effect of structural variation on aldehyde oxidase-catalyzed oxidation of zoniporide. Drug Metab Dispos 40(8):1575–1587. https://doi.org/10.1124/dmd.112.045823

    Article  CAS  PubMed  Google Scholar 

  91. Terao M, Kurosaki M, Marini M, Vanoni MA, Saltini G, Bonetto V, Bastone A, Federico C, Saccone S, Fanelli R, Salmona M, Garattini E (2001) Purification of the aldehyde oxidase homolog 1 (AOH1) protein and cloning of the AOH1 and aldehyde oxidase homolog 2 (AOH2) genes. Identification of a novel molybdo-flavoprotein gene cluster on mouse chromosome 1. J Biol Chem 276(49):46347–46363. https://doi.org/10.1074/jbc.M105744200

    Article  CAS  PubMed  Google Scholar 

  92. Kurosaki M, Terao M, Barzago MM, Bastone A, Bernardinello D, Salmona M, Garattini E (2004) The aldehyde oxidase gene cluster in mice and rats. Aldehyde oxidase homologue 3, a novel member of the molybdo-flavoenzyme family with selective expression in the olfactory mucosa. J Biol Chem 279(48):50482–50498. https://doi.org/10.1074/jbc.M408734200

    Article  CAS  PubMed  Google Scholar 

  93. Terao M, Kurosaki M, Demontis S, Zanotta S, Garattini E (1998) Isolation and characterization of the human aldehyde oxidase gene: conservation of intron/exon boundaries with the xanthine oxidoreductase gene indicates a common origin. Biochem J 332(Pt 2):383–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kurosaki M, Demontis S, Barzago MM, Garattini E, Terao M (1999) Molecular cloning of the cDNA coding for mouse aldehyde oxidase: tissue distribution and regulation in vivo by testosterone. Biochem J 341(Pt 1):71–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Terao M, Kurosaki M, Barzago MM, Varasano E, Boldetti A, Bastone A, Fratelli M, Garattini E (2006) Avian and canine aldehyde oxidases – novel insights into the biology and evolution of molybdo-flavoenzymes. J Biol Chem 281(28):19748–19761

    Article  CAS  PubMed  Google Scholar 

  96. Paragas EM, Humphreys SC, Min J, Joswig-Jones CA, Leimkühler S, Jones JP (2017) ecoAO: a simple system for the study of human aldehyde oxidases role in drug metabolism. ACS Omega 2(8):4820–4827. https://doi.org/10.1021/acsomega.7b01054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Crouch RD, Hutzler JM, Daniels JS (2018) A novel in vitro allometric scaling methodology for aldehyde oxidase substrates to enable selection of appropriate species for traditional allometry. Xenobiotica 48(3):219–231. https://doi.org/10.1080/00498254.2017.1296208

    Article  CAS  PubMed  Google Scholar 

  98. Sanoh S, Horiguchi A, Sugihara K, Kotake Y, Tayama Y, Ohshita H, Tateno C, Horie T, Kitamura S, Ohta S (2012) Prediction of in vivo hepatic clearance and half-life of drug candidates in human using chimeric mice with humanized liver. Drug Metab Dispos 40(2):322. https://doi.org/10.1124/dmd.111.040923

    Article  CAS  PubMed  Google Scholar 

  99. Kitamura S, Nitta K, Tayama Y, Tanoue C, Sugihara K, Inoue T, Horie T, Ohta S (2008) Aldehyde oxidase-catalyzed metabolism of N1-methylnicotinamide in vivo and in vitro in chimeric mice with humanized liver. Drug Metab Dispos 36(7):1202. https://doi.org/10.1124/dmd.107.019075

    Article  CAS  PubMed  Google Scholar 

  100. Wilkinson DJ, Southall RL, Li M, Wright LM, Corfield LJ, Heeley TA, Bratby B, Mannu R, Johnson SL, Shaw V, Friett HL, Blakeburn LA, Kendrick JS, Otteneder MB (2017) Minipig and human metabolism of aldehyde oxidase substrates: in vitro–in vivo comparisons. AAPS J 19(4):1163–1174. https://doi.org/10.1208/s12248-017-0087-3

    Article  CAS  PubMed  Google Scholar 

  101. Zientek M, Jiang Y, Youdim K, Obach RS (2010) In vitro-in vivo correlation for intrinsic clearance for drugs metabolized by human aldehyde oxidase. Drug Metab Dispos 38(8):1322–1327. https://doi.org/10.1124/dmd.110.033555

    Article  CAS  PubMed  Google Scholar 

  102. Rashidi MR, Smith JA, Clarke SE, Beedham C (1997) In vitro oxidation of famciclovir and 6-deoxypenciclovir by aldehyde oxidase from human, Guinea pig, rabbit, and rat liver. Drug Metab Dispos 25(7):805–813

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T. Barr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Paragas, E.M., Choughule, K., Jones, J.P., Barr, J.T. (2021). Enzyme Kinetics, Pharmacokinetics, and Inhibition of Aldehyde Oxidase. In: Nagar, S., Argikar, U.A., Tweedie, D. (eds) Enzyme Kinetics in Drug Metabolism. Methods in Molecular Biology, vol 2342. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1554-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1554-6_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1553-9

  • Online ISBN: 978-1-0716-1554-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics