Skip to main content

Bioinformatics Methods in Predicting Amyloid Propensity of Peptides and Proteins

  • Protocol
  • First Online:
Computer Simulations of Aggregation of Proteins and Peptides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2340))

Abstract

Several computational methods have been developed to predict amyloid propensity of a protein or peptide. These bioinformatics tools are time- and cost-saving alternatives to expensive and laborious experimental methods which are used to confirm self-aggregation of a protein. Computational approaches not only allow preselection of reliable candidates for amyloids but, most importantly, are capable of a thorough and informative analysis of a protein, indicating the sequence determinants of protein aggregation, identifying the potential causal mutations and likely mechanisms. Bioinformatics modeling applies several different approaches, which most typically include physicochemical or structure-based modeling, machine learning, or statistics based modeling. Bioinformatics methods typically use the amino acid sequence of a protein as an input, some also include additional information, for example, an available structure. This chapter describes the methods currently used to computationally predict amyloid propensity of a protein or peptide. Since the accuracy of bioinformatics methods may be highly dependent on reference data used to develop and evaluate the predictors, we also briefly present the main databases of amyloids used by the authors of bioinformatics tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lopez de la Paz M, Serrano L (2004) Sequence determinants of amyloid fibril formation. Proc Natl Acad Sci U S A 101:87–92

    Article  CAS  PubMed  Google Scholar 

  2. Thompson MJ, Sievers SA, Karanicolas J et al (2006) The 3D profile method for identifying fibril-forming segments of proteins. Proc Natl Acad Sci U S A 103:4074–4078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pawlicki S, Le Bechec A, Delamarche C (2008) AMYPdb: a database dedicated to amyloid precursor proteins. BMC Bioinformatics 9:273

    Article  PubMed  PubMed Central  Google Scholar 

  4. Beerten J, Van Durme J, Gallardo R et al (2015) WALTZ-DB: a benchmark database of amyloidogenic hexapeptides. Bioinformatics 31:1698–1700

    Article  CAS  PubMed  Google Scholar 

  5. Louros N, Konstantoulea K, De Vleeschouwer M et al (2020) WALTZ-DB 2.0: an updated database containing structural information of experimentally determined amyloid-forming peptides. Nucleic Acids Res 48(D1):D389–D393

    Article  CAS  PubMed  Google Scholar 

  6. Wozniak PP, Kotulska M (2015) AmyLoad: website dedicated to amyloidogenic protein fragments. Bioinformatics 31:3395–3397

    Article  CAS  PubMed  Google Scholar 

  7. Thangakani AM, Nagarajan R, Kumar S et al (2016) CPAD, curated protein aggregation database: a repository of manually curated experimental data on protein and peptide aggregation. PLoS One 11:e0152949

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rawat P, Prabakaran R, Sakthivel R, Mary Thangakani A, Kumar S, Gromiha MM (2020) CPAD 2.0: a repository of curated experimental data on aggregating proteins and peptides. Amyloid 27:128

    Article  CAS  PubMed  Google Scholar 

  9. Varadi M, De Baets G, Vranken WF et al (2018) AmyPro: a database of proteins with validated amyloidogenic regions. Nucleic Acids Res 46(D1):D387–D392

    Article  CAS  PubMed  Google Scholar 

  10. Goldschmidt L, Teng PK, Riek R et al (2010) Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proce Natl Acad Sci USA 107:3487–3492

    Article  CAS  Google Scholar 

  11. Nastou KC, Tsiolaki PL, Iconomidou VA (2019) The amyloid interactome: mapping protein aggregation. Amyloid 26(Suppl 1):142–143

    Article  PubMed  Google Scholar 

  12. Fernandez-Escamilla AM, Rousseau F, Schymkowitz J, Serrano L (2004) Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol 22(10):1302–1306

    Article  CAS  PubMed  Google Scholar 

  13. Rousseau F, Schymkowitz J, Serrano L (2006) Protein aggregation and amyloidosis: confusion of the kinds? Curr Opin Struct Biol 16(1):118–126

    Article  CAS  PubMed  Google Scholar 

  14. Trovato A, Chiti F, Maritan A, Seno F (2006) Insight into the structure of amyloid fibrils from the analysis of globular proteins. PLoS Comput Biol 2(12):e170

    Article  PubMed  PubMed Central  Google Scholar 

  15. Walsh I, Seno F, Tosatto SC, Trovato A (2014) PASTA 2.0: an improved server for protein aggregation prediction. Nucleic Acids Res 42:W301–W307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Conchillo-SolĂ© O, de Groot NS, AvilĂ©s FX et al (2007) AGGRESCAN: a server for the prediction and evaluation of “hot spots” of aggregation in polypeptides. BMC Bioinformatics 8:65

    Article  PubMed  PubMed Central  Google Scholar 

  17. de Groot NS, Aviles FX, Vendrell J, Ventura S (2006) Mutagenesis of the central hydrophobic cluster in Abeta42 Alzheimer’s peptide. Side-chain properties correlate with aggregation propensities. FEBS J 273(3):658–668

    Article  PubMed  Google Scholar 

  18. Zambrano R, Jamroz M, Szczasiuk A et al (2015) AGGRESCAN3D (A3D): server for prediction of aggregation properties of protein structures. Nucleic Acids Res 43(W1):W306–W313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kuriata A, Iglesias V, Kurcinski M et al (2019) Aggrescan3D standalone package for structure-based prediction of protein aggregation properties. Bioinformatics 35(19):3834–3835

    Article  CAS  PubMed  Google Scholar 

  20. Kuriata A, Iglesias V, Pujols J et al (2019) Aggrescan3D (A3D) 2.0: prediction and engineering of protein solubility. Nucleic Acids Res 47(W1):W300–W307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jamroz M, Kolinski A, Kmiecik S (2013) CABS-flex: server for fast simulation of protein structure fluctuations. Nucleic Acids Res 41:W427–W431

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kuriata A, Gierut AM, Oleniecki T et al (2018) CABS-flex 2.0: a web server for fast simulations of flexibility of protein structures. Nucleic Acids Res 46(W1):W338–W343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim C, Choi J, Lee SJ et al (2009) NetCSSP: web application for predicting chameleon sequences and amyloid fibril formation. Nucleic Acids Res 37:W469–W473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tian J, Wu N, Guo J, Fan Y (2009) Prediction of amyloid fibril-forming segments based on a support vector machine. BMC Bioinformatics 10(Suppl 1):S45

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kawashima S, Pokarowski P, Pokarowska M et al (2008) AAindex: amino acid index database, progress report 2008. Nucleic Acids Res 36:D202–D205

    Article  CAS  PubMed  Google Scholar 

  26. Kotulska M, Unold O (2013) On the amyloid datasets used for training PAFIG - how (not) to extend the experimental dataset of hexapeptides. BMC Bioinformatics 14:351

    Article  PubMed  PubMed Central  Google Scholar 

  27. Frousios KK, Iconomidou VA, Karletidi CM, Hamodrakas SJ (2009) Amyloidogenic determinants are usually not buried. BMC Struct Biol 9:44

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tsolis AC, Papandreou NC, Iconomidou VA, Hamodrakas SJ (2013) A consensus method for the prediction of ‘aggregation-prone’ peptides in globular proteins. PLoS One 8(1):e54175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hamodrakas SJ, Liappa C, Iconomidou VA (2007) Consensus prediction of amyloidogenic determinants in amyloid fibril-forming proteins. Int J Biol Macromol 41(3):295–300

    Article  CAS  PubMed  Google Scholar 

  30. Galzitskaya OV, Garbuzynskiy SO, Lobanov MY (2006) Prediction of amyloidogenic and disordered regions in protein chains. PLoS Comput Biol 2(12):e177

    Article  PubMed  PubMed Central  Google Scholar 

  31. Garbuzynskiy SO, Lobanov MY, Galzitskaya OV (2010) FoldAmyloid: a method of prediction of amyloidogenic regions from protein sequence. Bioinformatics 26(3):326–332

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Z, Chen H, Lai L (2007) Identification of amyloid fibril-forming segments based on structure and residue-based statistical potential. Bioinformatics 23(17):2218–2225

    Article  CAS  PubMed  Google Scholar 

  33. O’Donnell CW, WaldispĂŒhl J, Lis M et al (2011) A method for probing the mutational landscape of amyloid structure. Bioinformatics 27(13):i34–i42

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zibaee S, Makin OS, Goedert M, Serpell LC (2007) A simple algorithm locates beta-strands in the amyloid fibril core of alpha-synuclein, Abeta, and tau using the amino acid sequence alone. Protein Sci 16(5):906–918. Erratum in: Protein Sci (2007)16(6):1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maurer-Stroh S, Debulpaep M, Kuemmerer N et al (2010) Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nat Methods 7(3):237–242

    Article  CAS  PubMed  Google Scholar 

  36. Emily M, Talvas A, Delamarche C (2013) MetAmyl: a METa-predictor for AMYLoid proteins. PLoS One 8(11):e79722

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gasior P, Kotulska M (2014) FISH Amyloid - a new method for finding amyloidogenic segments in proteins based on site specific co-occurrence of aminoacids. BMC Bioinformatics 15(1):54

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ahmed AB, Znassi N, Chñteau MT, Kajava AV (2015) A structure-based approach to predict predisposition to amyloidosis. Alzheimers Dement 11(6):681–690

    Article  PubMed  Google Scholar 

  39. Bondarev SA, Bondareva OV, Zhouravleva GA, Kajava AV (2018) BetaSerpentine: a bioinformatics tool for reconstruction of amyloid structures. Bioinformatics 34(4):599–608

    Article  CAS  PubMed  Google Scholar 

  40. Smaoui MR, Orland H, WaldispĂŒhl J (2015) Probing the binding affinity of amyloids to reduce toxicity of oligomers in diabetes. Bioinformatics 31(14):2294–2302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Smaoui MR, Poitevin F, Delarue M et al (2013) Computational assembly of polymorphic amyloid fibrils reveals stable aggregates. Biophys J 104(3):683–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. FamĂ­lia C, Dennison SR, Quintas A, Phoenix DA (2015) Prediction of peptide and protein propensity for amyloid formation. PLoS One 10(8):e0134679

    Article  PubMed  PubMed Central  Google Scholar 

  43. Burdukiewicz M, Sobczyk P, Rödiger S et al (2017) Amyloidogenic motifs revealed by n-gram analysis. Sci Rep 7(1):12961

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sankar K, Krystek SR Jr, Carl SM et al (2018) AggScore: prediction of aggregation-prone regions in proteins based on the distribution of surface patches. Proteins 86(11):1147–1156

    Article  CAS  PubMed  Google Scholar 

  45. Niu M, Li Y, Wang C, Han K (2018) RFAmyloid: a web server for predicting amyloid proteins. Int J Mol Sci 19(7):2071

    Article  PubMed Central  Google Scholar 

  46. Orlando G, Silva A, Macedo-Ribeiro S et al (2020) Accurate prediction of protein beta-aggregation with generalized statistical potentials. Bioinformatics 36(7):2076–2081

    Article  CAS  PubMed  Google Scholar 

  47. Wojciechowski JW, Kotulska M (2020) PATH - prediction of amyloidogenicity by threading and machine learning. Sci Rep 10(1):7721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sali A, Blundell TL (1994) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779–815

    Article  Google Scholar 

  49. Chaudhury S, Lyskov S, Gray JJ (2010) PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta. Bioinformatics 26(5):689–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was partially supported by the National Science Centre, Poland, Grant 2019/35/B/NZ2/03997.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MaƂgorzata Kotulska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kotulska, M., Wojciechowski, J.W. (2022). Bioinformatics Methods in Predicting Amyloid Propensity of Peptides and Proteins. In: Li, M.S., Kloczkowski, A., Cieplak, M., Kouza, M. (eds) Computer Simulations of Aggregation of Proteins and Peptides . Methods in Molecular Biology, vol 2340. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1546-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1546-1_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1545-4

  • Online ISBN: 978-1-0716-1546-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics